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Abstract

The general job-shop scheduling problem is
known to be extremely hard. We describe
a GA approach which produces reasonably
good results very quickly on standard bench-
mark job-shop scheduling problems, better
than previous efforts using genetic algorithms
for this task, and comparable to existing con-
ventional search-based methods. The rep-
resentation used is a variant of one known
to work moderately well for the traveling
salesman problem. It has the considerable
merit that crossover will always produce le-
gal schedules. A novel method for perfor-
mance enhancement i1s examined based on
dynamic sampling of the convergence rates in
different parts of the genome. Our approach
also promises to effectively address the open-
shop scheduling problem and the job-shop
rescheduling problem.

1 INTRODUCTION

The job-shop scheduling problem (JSSP) is a very im-
portant practical problem. Efficient methods of solv-
ing it can have major effects on profitability and prod-
uct quality, but with the JSSP being among the worst
members of the class of NP-complete problems (Gary
& Johnson 1979) there remains much room for im-
provement in current techniques. In general, the diffi-
culty of the general JSSP makes it very hard for con-
ventional search-based methods to find near—optima
in reasonable time. This has led to recent interest in
using genetic algorithms (GAs) to address these prob-
lems.

In the general JSSP, there are j jobs and m machines;
cach job comprises a set of tasks® which must each
be done on a different machine for different specified

!Note: what we call a “task” is often called an “opera-
tion” in the JSSP literature.

processing times, in a given job-dependent order. Eg:,
table 1 shows a standard 6 x 6 benchmark problem
(ie, j = 6,m = 6), from (Muth & Thompson 1963). In

(mit) (mt) (myt) (mt) (mt) (m,t)

Job1: 3.1 13 26 47 63 56
Job2: 28 35 510 610 1,10 44
Job3: 35 44 68 19 21 57
Job4: 25 15 35 43 58 69
Job5 39 23 55 64 13 4,1
Job6: 23 43 69 1,10 54 3,1

Table 1: The 6x6 benchmark problem

this example, job 1 must go to machine 3 for 1 unit of
time, then to machine 1 for 3 units of time, and so on.
A legal schedule is a schedule of job sequences on each
machine such that each job’s task order is preserved,
a machine 1s not processing two different jobs at once,
and different tasks of the same job are not simulta-
neously being processed on different machines. The
problem is to minimise the total elapsed time between
the beginning of the first task and the completion of
the last task (the makespan). Other measures of sched-
ule quality exist, but shortest makespan is the simplest
and most widely used criterion. For the above prob-
lem the minimum makespan is known to be b5, as in,
for example, the schedule shown in figure 1 .

There are two similar benchmarks, of sizes 10 x 10
and 20 x 5. The best results on these benchmarks for
traditional (B & B — branch & bound search) and GA

methods published so far are shown in table 22

The branch & bound method (eg: see (Carlier & Pin-
son 1989)) produces good results but takes consider-
able computer time even for the 10 x 10 problem be-
cause of the significant amount of schedule generation
implicit in the method. (Davis 1985) was the first
to suggest and demonstrate the feasibility of using a

% Adapted from (Nakano 1991).
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Figure 1: An optimal schedule for 6x6 JSSP bench-
mark

Paper Method 6x6 10x10 20xb
McMahon 75 B & B 55 972 1165
Baker 85 B & B 55 960 1303
Carlier 89 B & B 55 930 1165
Nakano 91 GA 55 965 1215

Table 2: Some published benchmark results

GA on a simple JSSP, employing an essentially ad-
hoc set of genetic operators and a memory-intensive
chromosome representation, paving the way for future
improvements. Meanwhile, the general success of GAs
on other kinds of hard scheduling problems, such as
the traveling salesman problem (TSP), started to lead
to clues for more effective representations and opera-
tors for GA approaches. Eg: (Whitley et al 1989) de-
fined a new edge recombination operator for the TSP,
although noted that performance degraded when ap-
plied to more typical scheduling problems; (Bagchi et
al 1991) used problem-specific information in the rep-
resentation and genetic operators, addressing a limited
form of JSSP in which certain batches of tasks must be
scheduled continuously. More recently, (Nakano 1991)
used a conventional (binary) GA for the JSSP, supple-
mented with algorithms for interpreting and repairing
genomes, and was successful in improving on the per-
formance of some previously reported branch & bound
search methods on benchmark problems, though did
not improve on the best results found with these meth-
ods.

Our approach uses a variant of the ordinal representa-
tion introduced in (Grefenstette et al 1985) and used
for the TSP. This representation has the considerable
merit of producing only legal schedules under crossover
and mutation. When applied to the JSSP| it produces
better results than those of (Nakano 1991) with pleas-
ingly small computational effort, and thus provides a
convenient way to handle the rescheduling problem
too. The rescheduling problem involves modifying a
schedule in process of execution in order to take ac-
count of changed, canceled or new jobs. Because this

sort of thing happens frequently in the kind of organi-
sation that has to deal with JSSPs, it is as important to
find efficient rescheduling algorithms (which hopefully
don’t involve rebuilding the schedule from scratch) as
it 1s to find effective algorithms for the full JSSP.

2 OVERVIEW

In section 3 we describe our encoding technique, and
outline the basic activities of the schedule builder
which performs the interpretation of a genome for the
JSSP. In section 4 we go on to discuss the application
of this approach to Open-Shop scheduling, and outline
the more sophisticated schedule builder we employ in
this latter case. In section 5 we briefly describe the
job-shop rescheduling problem, and how it can be ad-
dressed via our approach. In section 6 we go on to
discuss the qualitative GA dynamics which arise from
the representation we use, making points in particu-
lar about the redundancy of the representation, and
the variation in convergence rates for different genes
(or ‘chunks’ of the genome). This leads us towards
introducing a method for combating premature con-
vergence in general GA applications that involve sig-
nificant variation in gene convergence rates, which is
discussed further in section 7. Section 8 presents some
basic results: concerning the performance of our ba-
sic approach on two benchmark JSSPs, showing how
this approach outperforms previously reported GA at-
tempts at this task which we know of; concerning the
performance of our basic approach, enhanced by ‘gene-
variance-based operator targeting’, showing improve-
ment on the initial unenhanced results; and concerning
performance on a selection of benchmark open-shop-
scheduling problems, showing how our approach comes
within a few percent (sometimes 0%) of the optimal or
best-known solutions for the problems tried. We know
of no GA-based efforts on the OSSP with which to
compare, so we present these latter results in order to
show the potential for a GA approach to open-shop
scheduling, and invite fellow GA researchers to exper-
iment with the same problems. At the end of this
section, we describe how to obtain the problem defini-
tions for the benchmarks used in this paper. Finally,
section 9 summarises our results and discusses the gen-
eral approach and further work.

3 THE REPRESENTATION

The genotype for a j x m problem is a string contain-
ing j X m chunks, each chunk being large enough to
hold the largest job number (j). A chunk is atomic as
far as the GA is concerned. It provides instructions
for building a legal schedule as follows: the string of
chunks abe - - - means: put the first untackled task of
the a-th uncompleted job into the earliest place where
it will fit in the developing schedule, then put the first
untackled task of the b-th uncompleted job into the



earliest place where it will fit in the developing sched-
ule, and so on. The representation can be seen to
encode all active schedules, and also lends itself to
obvious extensions which would enable the encoding
of necessary or unnecessary delays on machines. The
task of constructing an actual schedule is handled by a
schedule builder which maintains a circular list of un-
completed jobs and a list of untackled tasks for each
such job. Thus the notion of “a-th uncompleted job”
is taken modulo the length of the circular list to find
the actual uncompleted job. Note: instead of employ-
ing a circular list, (Grefenstette et al 1985) constrains
alleles of the ¢-th chunk to range from 1 to N —z41
in value; it 1s unclear how to directly extend this tech-
nique to a JSSP (with more than one machine), hence
our use of a circular list.

The schedule builder is straightforward and computa-
tionally cheap. It must consider four cases when slot-
ting a task into a developing schedule. For instance,
suppose it is asked to slot job 1 into machine 2, with
processing time 2. If there is a suitable gap in the
schedule for machine 2, it may be possible to fit the
task in there with or without compulsory idle time.
If no suitable gap exists, that task has to be added
to the end of the machine’s schedule with or without
compulsory idle time. Figure 2 shows the choices. The

With suitable gap,
idle time needed:
mcl:.. 11333 mcl:..
mc2:.. 2 ## 3333 mc2:..

. not needed:
114444
222## 44

No suitable gap,
idle time needed: .
mcl:.. 555111 mcl:..
mc2:.. 22 5 ## mc2:..

. not needed:
66611
22 666##

Figure 2: Scheduler builder choices of task placement

symbol “##” shows where the schedule builder would
place the task in each case.

4 OPEN-SHOP SCHEDULING

The Open-Shop Scheduling Problem (OSSP) is similar
to the JSSP, with the exception that there is no a pri-
ori ordering on the tasks within a job. The OSSP has
a considerably larger search space than the JSSP, and
seems to be less heavily addressed in the literature,
although 1t is an important and ubiquitous problem,
occurring in any job-shop situation in which tasks for
a particular job may be carried out in (almost) any or-
der, such as automotive repairs (tasks) for cars (jobs),
or upgrades/repairs (tasks) for PCs (jobs).

Table 3 shows a standard 5 x 5 benchmark OSSP (that
is, j = 5,m = 5) taken from (Beasley 1990). In the

(mt) (mt) (mt) (mt) (mt)
Job 1: 485 1,64 331 544 2,66
Job2: 1,7 414 269 518 3,68
Job3: 41 1,74 2,70 590 3,60
Job4: 245 476 513 398 1,54
Job5 1,80 4,15 245 591 3,10

Table 3: A 5x5 benchmark OSSP

above example, task 1 of job 1 must go to machine 4
for 85 units of time, task 2 of job 1 must go to machine
1 for 64 units of processing time, and so on, with no
restrictions on the order in which the tasks for any job
are to be processed. The problem is to generate a valid
schedule with minimal makespan. Figure 3 shows a
minimum-makespan (300) schedule for the benchmark
in table 3.

machine
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Figure 3: Minimal-makespan schedule for a 5x5 OSSP
benchmark

The basic extension of the representation described in
section 3 to the OSSP involves a genome abed... mean-
ing: put the ath untackled task of the bth uncompleted
job into the earliest place it will fit in the developing
schedule, put the cth untackled task of the dth un-
completed job into the earliest place it will fit in the
developing schedule, and so on. Whereas previously,
for the JSSP, the ‘first untackled task’ for any par-
ticular job was always predetermined owing to the a
priori ordering on tasks, in this case we need to incor-
porate an extra gene for each job to encode which of
the remaining tasks for a job to choose (since with no
predetermined ordering, any may be chosen).

An alternative is to use precisely the same representa-
tion as for the JSSP, but change the interpretation of
abe... to: heuristically choose an untackled task from
the ath uncompleted job and place it in the earliest
place it will fit in the developing schedule, heuristi-
cally choose an untackled task from the bth uncom-
pleted job and and place it in the earliest place it will
fit in the developing schedule, and so on. In this case,
at each step the schedule builder looks ahead to find
the earliest available slot(s) in the developing sched-



ule into which a non-empty set of tasks from the cur-
rent job can be placed. If lookahead determines that
more than one equally early slots are available, then
a simple heuristic is used to choose which task to ac-
tually place in which slot. Two simple heuristics we
have used are: (a) choose randomly from the available
tasks; (b) choose the task with the largest process-
ing time. The random method seems to work best on
small problems, but best results are found on larger
problems with the “largest-first” heuristic. In general,
this lookahead /heuristic method for the OSSP works
better than the basic extension to the JSSP approach
described in the above paragraph.

5 JOB-SHOP RESCHEDULING

Job-shops are beset by the continual need to alter
previously worked out schedules in the light of prob-
lems which arise. This typically means revising the
expected processing time for some job in the sched-
ule, or revising (typically delaying) the start time for
a particular task. There is thus a need for efficient
methods of rescheduling. If work has not yet begun
on the current schedule, then an obvious and sim-
ple approach to rescheduling would be to rerun the
schedule-finding program (eg: in this case, a GA)
from scratch on the changed data. Strict reschedul-
ing, however, means not scheduling the entire prob-
lem from scratch; rescheduling i1s thus strictly neces-
sary when either there is not enough time to be able
to schedule from scratch, or when part of the current
schedule is already in progress. A proper rescheduling
method would be to re-use some of the work already
done in finding the previous schedule. This might in-
volve augmenting the previous schedule with the new
change, and iteratively modifying it until it 1s accept-
able. Another method would be to recover a new,
smaller scheduling problem made up from all and only
those parts of the previous schedule that are affected
by the change.

Rescheduling from scratch is obviously to be avoided in
the light of the large processing time required for large
problems and the frequency of the need to reschedule.
Also, sophisticated use of previous work is very diffi-
cult to achieve with a typical GA (although see (Louis
et al 1993) for a recent attempt at storing schema in-
formation in a case base). Nominal use of previous
work done could involve seeding; we have not yet tried
this. Our representation and schedule builder, how-
ever, lend themselves naturally to a method in which
we make a smaller scheduling problem, via a simple
dependency analysis which finds out which tasks are
affected by the changes.

Two kinds of situation are dealt with: a change in the
processing time of some task (which includes the case
of removing a task entirely), and a change in the start
time of some task (if, for example, a task must be de-

layed because of problems with a machine or delays in
obtaining resources). Input to the rescheduler is sim-
ply the genome representing the schedule which must
be altered. The user then enters the required modifi-
cation (to the processing time and/or start time of one
or more tasks). With reference to figure 1, suppose we
need to increase the processing time of the machine?2
task of jobl. A simple dependency analysis discov-
ers that the affected tasks are those that occur later
in the schedule on machine 2 (as well as the changed
task itself), as well as the machine 4, 5 and 6 tasks
of job 1. Recursively, other affected tasks are found
for each of the initially affected tasks until the com-
plete set of affected tasks is found. Along with values
from the previous schedule which contain new avail-
able start times for each machine, this set of affected
tasks constitutes a reduced JSSP which can be solved
by the GA much more quickly than fully rescheduling
from scratch. A similar dependency analysis and re-
duced JSSP formulation is done for the case in which
a task’s earliest possible start time is shifted.

This method does not guarantee an optimal new sched-
ule; the GA, of course, never guarantees optimal-
ity anyway, but the point is that the retention of a
fixed (unaffected) portion of the previous (near) opti-
mal schedule might preclude the discovery of an op-
timal schedule which might otherwise be possible to
find by rescheduling from scratch. The strength of
this rescheduling method, however, lies in its speed.
There is thus a tradeoff between the speed in which
a good new schedule can be found via retaining parts
of the previous schedule, and the potential advantage
of rescheduling from scratch with the (probably low)
possibility of evolving a significantly better schedule.
Experiments are underway to quantitatively analyse
this tradeoff.

6 PERFORMANCE
ENHANCEMENTS

On hard problems like the JSSP, GA researchers rou-
tinely need to use either problem-specific or problem-
type specific performance enhancements to improve
performance. These enhancements are interesting be-
cause of the light they shed on the dynamics of the
GA approach and the aspects of problems which make
it hard or easy for GAs to solve them. For ex-
ample, Nakano’s representation is highly redundant
(with 273(i=1)/2 genomes representing approximately
J™ distinct schedules) and so leads to the possibility
of false competition among genotypes, in which dif-
ferent representations of the same schedule compete
against one another, possibly to yield inferior descen-
dants which combine aspects of their parents’ repre-
sentations which do not translate into good building
blocks. There is, in fact, very little chance (but see be-
low) of two representations of the same schedule com-



peting in early generations — although there may be
a huge number of possible representations of the same
schedule, this number is entirely swamped by the num-
ber of distinct schedules. However, false competition
will still be manifest with different representations of
the same building block or, to be more correct, the
same forma. A forma (Radcliffe 1990) can be viewed
as any dimension along which two genomes are equiv-
alent. False competition will then be relevant if the
schemata in the representation do not directly coin-
cide with the formae which (intuitively) represent the
important building blocks; this is typically the case in
sophisticated GA applications. Eg; in our case, the
forma: “schedules in which the machine2 task of job
1 is scheduled before the machine2 task of job 2”7 may
well be a good building block (ie: have high average
fitness), but, since it does not correspond to a partic-
ular schema, two schedules which are instances of this
forma may well recombine to produce children which
are not.

Nakano partially combats false competition with fore-
ing, in which he replaces illegal genotypes in the pool
with their ‘nearest’ legal matches. This forces a one-
to-one genotype/schedule mapping in a gene pool,
eliminating false competition in the selection step (al-
though still typically resulting in illegal schedules af-
ter crossover). Nakano hence uses a highly redundant
representation with a complex evaluation technique for
the basic GA, and then significantly improves perfor-
mance by using forcing to reduce false competition.
Our approach does not require forcing, since the rep-
resentation always encodes legal schedules, but there
is high redundancy (though less high than Nakano’s),
and we similarly need a way of countering false com-
petition.

Our choice of representation is highly context sensi-
tive, and leads to front parts of the genotype converge
more quickly than later parts. This seems to happen
because schemata defined early in the genome corre-
spond more precisely to good formae; that is: a schema
such as 1,2,0,0,..., always corresponds to the forma
“first schedule the first task of jobl, and then the first
task of job2”. If it so happens that this forma has
high fitness, then this schema will have high fitness.
However, schemata defined later in the genotype, such
as 0,000,002 03, are likely to represent radically
different formae in different genomes (contexts) — the
sampled mean fitness of such a schema will thus tend
towards the mean fitness of the population as a whole.
Hence, high-fitness schemata will only be found early
in the genome, and these will converge first (providing
a ‘context’ which then leads to high fitness schemata
being found a little later in the genome, and so on).

False competition thus leads to differing convergence
rates for schemata across the genotype. This effect ac-
tually rises quite sharply towards the tail of the geno-
type owing to the fact that as the context becomes set

by convergence in the rest of the genome, the j alleles
of any tail-end gene are ‘competing’ for, and thus mul-
tiply representing, fewer and fewer unscheduled tasks.

10x10 : variances : population size 500
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Figure 4: Plot of variance of chunks of the genome
with time, and with genome position, on the 10 x 10

JSSP.

We can visualise the overall effect of this in figure 4, in
which we can clearly see gradually decreasing conver-
gence speed as we traverse the chromosome from left
to right. This figure shows a plot of the variance of
each chunk of the genotype within the pool (size 500)
with its position in the genotype, and with generation
as the GA operates, for 300 generations of a run on the
10 x 10 benchmark JSSP. As figure 4 shows, gene con-
vergence rates fall fairly smoothly as a function of po-
sition in the genotype. This kind of behaviour should
be typical of GA problems where the representation,
for whatever reason, is such that there is a variation in
‘significance’ across the genotype. In the JSSP case,
in which large scale problems not only cost significant
computational time, but in which the solutions pro-
duced might significantly affect profits and/or prod-
uct quality, we should be able to exploit this effect
by using it to inform ways of increasing overall con-
vergence speed and/or solution quality. In section 7,
we describe a gene-variance based operator targeting
strategy, which is a principled first attempt at doing
just this, by making sure that genetic operators are
concentrated where and when they seem to be most
‘needed’. This initial attempt has led to significant
improvement in solution quality.

7 GENE-VARIANCE BASED
OPERATOR TARGETING

The situation in figure 4 suggests a strategy to im-
prove solution quality. First, the faster stabilisation
of early parts of the genome suggest premature con-
vergence. This is because the fast converging early
schemata may not have been adequately tested in the
context of good formae that may be (partly) encoded
later in the genome. Increasing mutation rates at fast



converging sites may thus improve performance; also,
this measure should obviate ‘wasted’ mutation in later,
slow-converging parts of the schedule which are still in
relatively early stages of exploration. Second, we can
expect crossover at early, more stable positions to have
minimal effect on sampling adequacy, since this leads
only to re-examining schemata over and over again in
similar contexts. So, encouraging crossover more at
later, less stable positions should lead to more effec-
tive exploitation. On the whole, it would seem a good
idea to increase the extent to which schemata are effec-
tively sampled in new contexts, in proportion to the
degree to which the GA seems ‘unsure’ about them.
Conversely, it would seem a good idea to increase the
extent to which new schemata are explored (via muta-
tion) , in proportion to the extent to which schemata
defined at the same positions have already been (per-
haps prematurely) converged to.

A way of implementing these effects is what we term
gene-variance based operator targeting (GvoT). This
works by measuring the diversity of genes at each po-
sition of the genotype in a pool (in our experiments,
we do this by sampling statistical variance after ev-
ery ten generations), and choosing the actual point
of crossover or mutation via roulette-wheel selection
based on these variances. Sites for N-point uniform
crossover are selected probabilistically but according
to the square of chunk variance, while order-based mu-
tation positions are selected according to the inverse
of chunk variance. Hence, high variance sections are
more likely to be chosen for crossover; low variance
sections for mutation.

This can be seen as a specific instance of an idea which
should be of more general use in GA performance en-
hancement on hard problems, particularly where there
i1s a significant variance in convergence rates at dif-
ferent sites in the genotype. In many other kinds of
problem we can’t expect smooth changes in variance
across the genotype; this would not occur in the JSSP,
for instance if (unusually) task processing times were
to grow as a function of advancing position in the job
sequence. However, whenever significant variation in
convergence rate does occur (smooth or not), the gvoT
strategy, targeting operators solely on the basis of dy-
namically sampled variance, should work just as well.

This performance enhancement method complements
those discussed in, for example, (Booker 1987) and
(Eshelman & Schaffer 1991), which present ways of
improving performance by, eg, encouraging recombi-
nation between adequately ‘different’ genomes (incest
prevention), and avoiding wasted crossover operations
by only recombining the ‘reduced surrogate’ of two
parents (the smaller genome made up of those sites
at which the parents are different). There are com-
plex interactions between such methods and GvoT.
Roughly speaking, GvoT slows down convergence of
otherwise fast-converging schemata in order to wait

for other schemata to catch up, while encouraging vig-
orous recombination to more effectively test the lat-
ter; incest prevention in conjunction with reduced-
surrogate recombination, on the other hand, will par-
tially reproduce this effect to the extent that less con-
verged schemata will be more likely to be present
in the reduced surrogates of parents which are far
enough apart to sanction recombination. The latter
method, however, does not ‘slow down’ fast-converging
schemata (which GvoT does via targeting mutation at
fast-converging sites). We intend extensive experimen-
tation to tease out the relative effectiveness of these
methods in conjunction with, and other than, GvoT
on problems with highly context sensitive genome rep-
resentations. Our feeling is that GvoT, owing to the
direct selective targeting of operators according to con-
vergence rates, will be more and more effective the
more varied the schemata convergence rates are in the
application.

GVOT is less effective (though still produces better re-
sults), for example, with the representations we discuss
above for the OSSP. This is because the plot anal-
ogous to figure 4 for the OSSP is rather more flat;
because of much higher epistasis in the OSSP case
(low-variance highly fit schemata only begin to occur
at relatively long defining lengths), schemata sampled
in earlier generations have a less significant advantage
over others than in the JSSP case, and hence there is
reduced variation in convergence rates.

8 RESULTS

The JSSP results below all involve population sizes of
500, using rank-based selection with elitism and a fixed
crossover rate, running for 300 generations (unless oth-
erwise specified), hence involving 150,000 evaluations.
The comparative figures for Nakano involve the same
number of evaluations, though based on 1,000 gener-
ations with populations of size 150. The raw fitness
of a chromosome was taken to be the makespan of
the schedule it represents. The OSSP results similarly
involve rank-based selection with elitism but use adap-
tive crossover and runs of 1,000 generations. The two
smaller OSSPs were tackled with populations of size
100, while the rest were tackled with populations of
size 200. We found that results did not vary signif-
icantly across changes in crossover rate and adapta-
tion regime. The reported JSSP experiments used a
crossover rate of 0.6 and adaptive mutation (starting
at 0, rising by 0.001 per generation), while the OSSP
experiments use adaptive crossover (starting with pc
at 0.6, falling by 0.002 per generation, with a limit
of 0.2) and adaptive mutation at 1 — pe. Typically,
order-based mutation (swap alleles between two ran-
domly chosen genes) was used. For the OSSP, the mu-
tation rate was the probability of mutating a genome;
so, for example, where pys (ie: 1 — pe) was 0.6, this
roughly translates to a bit-mutation rate of, for ex-



ample, 0.012 for the 10x10 OSSP (divide by half the
genome length).

GVOT involves calculating a measure of the diversity of
alleles of a gene (or chunk of genes) within a popula-
tion. We are still experimenting to find the most suit-
able measure of this diversity. Both JSSP-with-cvoT
and OSSP-with-GvoT results use statistical variance
of the numerical value of the alleles as a simple ap-
proximation to this measure; we are also investigat-
ing the use of allele entropy as a more well-founded
information-theoretic measure of the diversity of alle-
les. In addition, we are experimenting with different
ways of using the diversity measure to target opera-
tors. For the JSSP with Gvor, the method we used
was roulette-wheel selection of crossover points based
on variance (mutation sites based on inverse variance).
For the OSSP with GvoT, we employed what we term
maultiform crossover, in which the probability of swap-
ping genes between parents at a particular site is ad-
justed (from the normal 0.5, for uniform crossover) in
accordance with the relative variance at that site.

Our main results are that we have been able to find
better solutions on benchmark JSSPs than previous
GA-based methods and have thus closed the gap some-
what between GA-based approaches and the best so-
lutions so far found with branch & bound search.

In the two following tables, ‘average’ figures refer to
the mean result over 10 trials; these are not avail-
able for Nakano’s technique. Also, Nakano’s ‘without-
forcing’ result on the 10 x 10 benchmark is read from
a graph in (Nakano 1991), hence our estimated error
margin.

Table 4 summarises our results without gene-variance
based operator targeting (GvoT), compared with
Nakano’s results (where available) without forcing,
showing how, the representation we describe leads to
better results when false competition is highly evident
in both approaches®.

10 x 10 20 x b
Average sol’n without
GVOT (Fang et al) 985 1225
Best sol’n without
GVOT (Fang et al) 960 1213
Best sol’n without
forcing (Nakano 91) 1160(+10) —

Table 4: Our approach vs. Nakano’s, without GVOT

With performance-enhancements in place, our results
using GVOT are compared with Nakano’s results using
forcing in table 5. It can also be noted that our best

°It is difficult for us to quantitatively compare our
with approaches other than Nakano’s since we have not
yet found other reported GA approaches which use the
benchmarks.

solutions without GVOT are marginally better than
Nakano’s with forcing.

10x 10 20 x5
Average sol’n with
GVOT (Fang et al) 977 1215
Best sol’n with
GVOT (Fang et al) 949 1189
Best sol’n with
forcing (Nakano 91) 965 1215

Table 5: Our approach vs. Nakano’s, with GVOT

Although improvement in solution quality is modest
as a percentage (though significant considering that
these solutions may be very close to optimal any-
way), the real advantage of our technique over pre-
vious GA methods is the combination of its appar-
ent promise and the straightforwardness of applying it
(arising from the absence of any need to repair invalid
genomes). We also feel that it significantly improves
on other techniques in terms of computational com-
plexity, though unfortunately we cannot yet provide
more quantitative results with regard to comparative
speed because of a lack of available figures for com-
parison; however we can report that experiments on
the 10 x 10 JSSP take less than 25 minutes of CPU
time and the 20 x 5 JSSP less than 30 minutes, with
our experiments implemented in C and run on a Sun-4
(without using GvoT, CPU time drops by about 30%).

We also experimented with one-point wvs uniform
crossover, and adaptive vs fixed order-based mutation
rates. The graphs in 5 show our results on the 10 x 10
and 20 x 5 JSSP benchmarks, comparing different GA
variants. Fired-1P employs a fixed mutation rate per
chromosome of 0.05 and one-point crossover; one-point
employs a mutation rate per chromosome which begins
at 0 and increases by 0.001 in each generation (stop-
ping at 0.1); uniform employs the same adaptive muta-
tion strategy as one-point and uses uniform crossover;
finally, GVOT is as uniform, except for the use of N-
point uniform crossover (where N is half the genome
length) with avoT.

Initial experiments with a (pseudo-)parallel GA with
migration every 20 generations show improved average
solution quality, as do experiments with larger popu-
lation sizes (though obviously at the expense of time);
but more work i1s needed properly to investigate and
quantify these aspects.

Our initial results for a set of benchmark open shop
scheduling problems are shown in table 6. Results
for the two smaller problems were obtained with the
‘break-ties-randomly’ heuristic, while the results for
the larger problems were obtained with the ‘largest-
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Figure 5: Relative performance of different variants on

the 10 x 10 and 20 x 5 JSSP benchmarks

first” heuristic. For the two smaller problems and two
larger problems, ‘Best Known’ is the optimal solution;
for the rest, it is the best known solution. All OSSP
experiments involved use of GvoT, which produced re-
liably better results than without GvoT, though less
markedly so than with the JSSP.

OSS Problem  Best Known Results: mean/best

Tx1 193 193 / 193

5x5 300 302.2 / 300
T x 7 438 447.1 / 439
10 x 10 645 679.5 / 669
15 x 15 937 980.0 / 969
20 x 20 1155 1235.1 / 1213

Table 6: Results on benchmark OSSPs

The JSSP benchmark problems used in this paper can
be obtained from (Muth & Thompson 1963). The
OSSP problems referred to in table 6 can be obtained
via (Beasley 1990). The OR library referred to in the
latter article is an electronic library from which may
be obtained benchmarks for a wide range of OR prob-
lems. These are distributed in the form of Pascal code
which generates the problems. Researchers wishing to
compare with our results will need to know that the
problems referred to in table 6 are each the problem
No. 1 of their specified size. Alternatively, problem
data may be obtained directly from us.

9 CONCLUSIONS AND FURTHER
WORK

We present a promising new representation for GA
approaches to the JSSP, and described novel tech-
niques for analysing the GA dynamics in terms of the
variation in gene variance across the genotype, and
targeting operator positions according to dynamically
sampled measures of gene convergence rates. Our ap-
proach improves on the results obtained from other GA
methods we know of, and brings us closer to closing
the gap in solution quality between the best solutions

found by branch & bound search and those found by
GA approaches so far.

The approach also conveniently handles rescheduling
in the job-shop problem, and seems promising for ap-
plication to the open shop scheduling problem. More
tests are needed, however, before we can report a thor-
ough comparison of our method against other tech-
niques, and before we can determine the efficacy of our
method when applied to real-world problems (bench-
mark problems are unrepresentative of the true diffi-
culty of the general JSSP; the same might also be true
of most real-life JSSPs!). In this vein, further work is
under way to more thoroughly test the performance of
our technique on the benchmarks, and on a set of real
world JSSPs which we are planning to collate.

Finally, we hope to have shown further promise for
GA-based approaches to job-shop problems, and hope
and expect that further improvements will be reported
(by us and others) via the use of various problem-
specific heuristic improvements, as well as via ap-
proaches based on different genome representations.
For example (Grefenstette 1987) discusses the general
idea of incorporating problem-specific knowledge into
various parts of the GA, while (Beasley et al 1993),
describes a GA approach to combinatorial problems
based on an epistasis reducing representation, which
may be of use for the JSSP.
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