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Abstract

We describe a new selection technique for
evolutionary multiobjective optimization al-
gorithms in which the unit of selection is a
hyperbox in objective space. In this tech-
nique, instead of assigning a selective fitness
to an individual, selective fitness is assigned
to the hyperboxes in objective space which
are currently occupied by at least one indi-
vidual in the current approximation to the
Pareto frontier. A hyperbox is thereby se-
lected, and the resulting selected individual
is randomly chosen from this hyperbox. This
method of selection is shown to be more sensi-
tive to ensuring a good spread of development
along the Pareto frontier than individual-
based selection. The method is implemented
in a modern multiobjective evolutionary al-
gorithm, and performance is tested by using
Deb’s test suite of ‘T’ functions with varying
properties. The new selection technique is
found to give significantly superior results to
the other methods compared, namely PAES,
PESA, and SPEA; each is a modern multi-
objective optimization algorithm previously
found to outperform earlier approaches on
various problems.

1 Introduction

Standing on the shoulders of seminal research and de-
velopment in the area of multiobjective evolutionary
algorithms (MOEAs), such as the Niched Pareto Ge-
netic Algorithm (Horn et al., 1994; Horn and Nafpli-
otis, 1994), and the Non-Dominated Sorting method
(Srinivas and Deb, 1994), the last half-decade has
seen an explosion of interest and development of more
capable MOEAs. The techniques that have recently

emerged seem to provide fast and effective approxima-
tions to the Pareto frontier for a variety of benchmark
problems. These new methods include, among oth-
ers, SPEA (Strength Pareto Evolutionary Algorithm
—Zitzler and Thiele, 1999), PAES (Pareto Archived
Evolution Strategy — Knowles and Corne, 2000), M-
PAES (Memetic PAES — Knowles and Corne, 2000a),
PESA (Pareto Envelope based Selection — Corne et
al, 2000), MOMGA (Multi-Objective Messy Genetic
Algorithm, Van Veldhuizen and Lamont, 2000), and
NSGA-IT (Non-Dominated Sorting genetic Algorithm
IT — Deb et al, 2000).

PAES, PESA, SPEA, and NSGA-II can each be con-
sidered to be ‘basic’ MOEAs in the sense that their
flow of control is essentially a pure evolutionary algo-
rithm framework, while the differences between them
amount to explorations of various different ways to do
selection and population maintenance in multiobjec-
tive spaces. Methods such as M-PAES and MOMGA,
on the other hand, are more sophisticated algorithm
designs in which a pure evolutionary framework is es-
chewed in favour of a hybrid or multi-stage flow of con-
trol. M-PAES, for example, is a memetic algorithm in
which population based search is hybridised with local
search, while MOMGA is a messy genetic algorithm
(Goldberg et al, 1991) adapted for use in multiobjec-
tive search.

In this paper we are interested in the ‘basic’ evolu-
tionary multiobjective framework, and will therefore
no longer consider M-PAES, MOMGA, and other such
methods, but the technique developed may of course
be incorporated in sophisticated MOEAs such as M-
PAES and MOMGA in future work. We describe a
variation on how to do selection in basic MOEAs, and
compare an MOEA which uses this technique to each
of PAES, PESA and SPEA on a variety of test prob-
lems. We have not yet compared with NSGA-II, which
is an omission we hope soon to rectify.



We should also mention that much impressive mul-
tiobjective optimisation work is being done in the
fields of multiple criteria decision making (MCDM)
and operations research. Until recently, there has
been little crosstalk between these communities and
the MOEA community. Strong-performing algorithms
emerging from these areas include a variety of local-
search based multiobjective techniques, e.g. Czyzak
and Jaszkiewicz (1998), Gandibleux et al. (1996), and
Hansen (1996; 1997). Comparison of such methods
with modern MOEAs has been done little so far, al-
though recent work by Zitzler and Thiele (1999) and
Knowles and Corne (2000) indicate that methods such
as PAES and SPEA are at least comparable in quality
to these other methods.

The remainder of this paper is set out as follows. In
section 2 we briefly review selection schemes in modern
evolutionary multiobjective algorithms, and introduce
the simple concept of region-based selection. Some
simple analysis is done to suggest why region-based se-
lection may be favoured over other methods, in terms
of its maintained strong bias towards developing iso-
lated regions of the Pareto front. In section 3 we note
the algorithms and describe the test functions used in
later experiments. These experiments are described in
section 4 and their results are presented in section 5,
and we have a concluding discussion in section 6.

2 Region-Based Selection in
Evolutionary Multiobjective
Algorithms

2.1 Individual-Based Selection

We will use Figure 1 to illustrate the main selection
schemes used in current multiobjective evolutionary
algorithms. In the figure, a number of points are plot-
ted in objective space for a supposed two-objective
problem, and we imagine that the goal is to minimize
along both axes (in the directions shown by the ar-
rows). Objective space is divided into squares (gen-
erally, ‘hyperboxes’ in higher dimensional objective
spaces). In both PAES and PESA, the algorithms in-
corporate a subdivision of the objective space into hy-
perboxes as shown in the figure. In PESA information
concerning the occupation of hyperboxes is used for se-
lection as follows. An archive is maintained containing
only non-dominated solutions, and as such represents
the algorithm’s current approximation to the Pareto
frontier. Selection is only from this archive. The se-
lective fitness of an individual is simply the number
of other solutions which occupy the same hyperbox
as that individual. This is called the ‘squeeze fac-

tor’. Tournament selection (or any other basic selec-

tion scheme) can then be used to select parents with
a bias towards small squeeze factors.

In PAES, selection is rather a different affair since
PAES is essentially a local search method. There is
just one current solution at any time, and this is there-
fore always selected to be the parent of a mutant. How-
ever, when the mutant and current solution are non-
dominated, a decision has to be made as regards which
will become the new current solution (which can be
seen indirectly as selecting the parent for the next iter-
ation). The full details of this decision are in Knowles
and Corne (2000) but for present purposes we note
that, like PESA, it makes use of hyperbox occupancy.

Selection in SPEA is done via a ‘Strength Pareto’
scheme developed by Zitzler and Thiele (1999). This
is a way of assigning selective fitness to an individual
based on the number of individuals in the population
which it covers — an individual covers another if it dom-
inates it, or is equal to it. This method therefore relies
on having population members around which are not
in the current approximation to the Pareto front. In
SPEA, this is organised by having two populations, an
internal and external population. The external popu-
lation only contains non-dominated individuals, while
the internal population contains the latest crop of chil-
dren produced via genetic operators, and as such may
contain individuals which are dominated by members
of the external population. Figure 1, may represent
the combined populations at a snapshot in a run of
SPEA. The point labelled X is nondominated, and
hence in SPEA’s external population, and it domi-
nates two members of the external population (those
contained in the region enclosed by the lines emanat-
ing from X. The Strength measure for a nondominated
individual is just the number of individuals in the in-
ternal population which it covers. Strength measures
for members of the internal population are derived by
summing the strengths of the external population in-
dividuals which cover them. Selection is biased to-
wards minimising this strength figure, thus preferring
the exploration of less populated regions of the ob-
jective space. So, in Figure 1, Y will have a better
selective strength than X.

Finally, NSGA-II uses a rather different selection tech-
nique which has been found to be both highly efficient
and to perform very favourably in comparison to oth-
ers. In NSGA-II, a selective fitness measure is derived
for an individual by first finding the distance to the
closest other individual to it for each objective in turn.
The product of these distances gives a hypervolume
which in turn estimates the isolation of this individ-
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Figure 1: Illustration of Selection Methods in Modern MOEAs.

ual. Selection is therefore biased towards individuals
with a high isolation value. In Figure 1, for example,
the points in box A would have a low isolation value,
but that of point Y would be relatively high.

Each of the selection techniques is oriented towards
maintaining development of the Pareto front in a well
spread manner. That is, by biasing search in the re-
gion of relatively lonely regions of the current approx-
imation to the Pareto front, the aim is to promote an
even spread of individuals along it. The main differ-
ence between the methods is the precise way in which
the degree of isolation of an individual is estimated.
PAES and PESA use hyperbox counts, NSGA-II uses
distance to nearby individuals, and SPEA uses a some-
what indirect method which estimates an individual’s
isolation based on how many previously generated in-
dividuals it covers. An aspect which all of these meth-
ods share is that selection is individual-based. That
is, the unit of selection is an individual. The different
variations can therefore be seen as imposing different
distributions of selection probability on the individu-
als, with the goal of achieving higher probabilities for
those in isolated regions than those in crowded regions.

2.2 Region-Based Selection

Region-based selection provides an alternative, in
which the above goal is achieved more directly. In
region-based selection, the unit of selection is now a
hyperbox, rather than an individual. A selective fit-
ness is derived for a hyperbox. Using any standard se-
lection method, a hyperbox is therefore selected, and
the resulting individual chosen for genetic operations
is randomly chosen from the selected hyperbox. In

Figure 1, for example, hyperbox C would have a bet-
ter selective fitness than hyperbox B, which in turns
would have a better selective fitness than hyperbox C.

The following simple analysis suggests why region-
based selection may be favoured over an individ-
ual based scheme. Assume we are using binary
tournament selection without replacement in both
cases. That is, binary tournament selection is used
to select an individual based on selective fitnesses,
whether those selective fitness are individual-based
(measures of isolation such as strength or Deb’s
crowded-comparison measure (Deb et al, 2000)) or
hyperbox-based. It is worth first considering a patho-
logical case in which just two hyperboxes are occupied
in the current approximation to the Pareto front. One
is occupied by 9 individuals, and the other by a single
individual. We will also assume, which seems reason-
able, that the single individual is the most isolated in
respect of the typical individual based selective fitness
measures we have considered.

With binary tournament selection, the chance of se-
lecting the best individual (the most isolated one) in an
individual based selection scheme will be 1—(9/10)% =
0.19. The chance of selecting any one of the 9 over-
crowded individuals will therefore be 0.81. This does
not seem to provide suitably high bias towards de-
velopment in the less-crowded region. With region-
based selection, however, the units of selection are the
two occupied hyperboxes. The chance of choosing the
least-occupied box (and hence choosing the best indi-
vidual) is 1 — (1/2)? = 0.75. The chance of choosing
any one of the more crowded individuals is therefore
0.25. With individual based selection in this example,



we are actually more likely to choose a highly non-
isolated individual than the most isolated one. With
region-based selection, we are three times more likely
to choose the isolated than any of the non-isolated in-
dividuals.

We will now take a slightly more formal look, stepping
away from the pathological case to see what may be
the more typical situation. We will remain interested
in the relative probabilities of choosing a most isolated
individual over a most crowded individual, and will
continue to assume the use of binary tournament se-
lection. Consider an approximation to the Pareto front
which has b occupied hyperboxes, with n; individuals
in box i, and P individuals altogether in occupied hy-
perboxes, such that Zi.’:l n; = P. Assume now, with
a slight loss of generality, that a single hyperbox j
has the largest b; and another single hyperbox has the
smallest n;. The numbers of individuals in these least
and most crowded boxes will be [ and m respectively.

When using individual based selection, the chance of
choosing an individual from the least crowded box will
be 1 — ((P —1)/P)2. The corresponding term for the
most crowded box is simply (m/P)?; the ratio of these
probabilities (2P] — I?)/m?. When m is high with
respect to [, the relative chance of choosing an iso-
lated individual rather than a crowded one reduces
fairly sharply, this would seem to unreasonably draw
selective attention towards the crowded regions. In
contrast, the corresponding ratio for region-based se-
lection turns out to be 2b — 1. It is unaffected by the
relative numbers of individuals in the different boxes,
and never less than 1 (in fact, always at least 3 when
more than 1 hyperbox are occupied).

It might be thought that the same effect — that is, duly
high attention to isolated regions rather than crowded
ones, could be achieved by individual-based selection
with a higher tournament size. However, notice that
the chance of choosing an individual from the most
crowded box in this case will be (m/P)¥, where k is
the tournament size. When the tournament size is
large, this will drop very sharply with a large popula-
tion and a fairly even distribution of individuals among
them. In these conditions, the chance of choosing an
individual from the least crowded box would become
unacceptably low, affecting the exploratory capabili-
ties of the algorithm.

2.3 Complexity Issues

Here we briefly reflect on the complexity issues inher-
ent in individual-based versus region-based selection
schemes. In the context of multi-objective search, the
issue of main interest to us here is the complexity of

calculating selective fitness based on crowding in phe-
notype space. For simplicity, we will assume genera-
tional approaches in which a new population of size n
is in every generation.

Individual-based selection requires estimates of the de-
gree of ‘isolation’ of each individual. Accurate esti-
mation of the relative isolation of the individuals in a
population of size n would of course require n? compar-
ison operations, where the distances between all dis-
tinct pairs are calculated. However, it has been found,
in both NSGA-II and PAES, for example, that ap-
proximate estimates of isolation can be achieved more
quickly, with quite adequate results. For example, the
metric used to approximate isolation in NSGA-II (Deb
et al., 2000) requires O(k-nlogn) time, where k is the
number of objectives.

In region-based selection using hyperboxes, the key
computational concern is to caclulate a hyperbox ID
for each individual. As indicated in Knowles & Corne
(2000), in a k-objective problem using a grid of g*
hyperboxes, only Ok - n comparison operations need
be made per generation. Efficiency is improved if g
is a power of 2, but the broad order of complexity is
just linear in n. A single pass through the hyperbox
IDs then easily yields the selective fitness information
required by either region-based or individual-based se-
lection.

3 Algorithms and Test Functions

The algorithms we test in this paper are PAES, SPEA,
PESA, and PESA-II. PAES is described in full in
Knowles and Corne (2000), SPEA is described in Zit-
zler and Thiele (1999), and PESA is described in Corne
et al (2000). PESA-II is a version of PESA which uses
region-based selection. the parameter settings used are
detailed in section 4.

Deb (1998) gives a procedure for designing tunable test
functions for multiobjective optimisation. This tech-
nique enables the incorporation into objective space of
a range of characteristics to varying degrees. These
include discontinuity, concavity, non-uniformity of in-
dividuals along the Pareto front, and deception, each
of which are considered by many to be the key char-
acteristics which capable evolutionary multiobjective
optimisers need to cope with.

In this paper we use six test functions designed using
Deb’s scheme. These are the functions 7;-7g which
were used in a comparison of the performance of eight
different MOEAs by Zitzler et al (1999), and in a com-
parison of three different algorithms by Corne et al
(2000). The important characteristics of these func-



tions are as follows. 7; plays the role of a baseline,
simple test; it has a convex Pareto front, and no char-
acteristics which should lead to particular difficulty; 7>
has a non-convex Pareto front — this causes difficulties,
for example, for several techniques from the operations
research and MCDM communities, which attempt to
iteratively optimise weighted sums of the objectives for
different sets of weights, since solutions in the concave
region are not optima of any such scalarisation; 73 has
many discontinuities in the Pareto front; 7y is highly
multimodal and has 21° Pareto fronts; 75 is a decep-
tive problem, and 7 has a non-uniformly distributed
search space with solutions non-uniformly distributed
along the Pareto front.

Each is a two-objective problem defined on m param-
eters, in which both objectives are to be minimized.
In five of the problems the parameters x; were coded
as a binary string decoded such that z; € [0,1]. The
remaining function (75) also employed a binary chro-
mosome but this time unitation was used to evaluate
each of the parameters. We encode the functions here
in precisely the same way as done in Zitzler et al (1999)
and Corne et al (2000).

To briefly summarize Zitzler’s study, SPEA seemed to
be the best algorithm overall of the eight tested. Those
compared included several of the classic methods such
as the Niched Pareto Genetic Algorithm (Horn et al.,
1994; Horn and Nafpliotis, 1994), the Non-Dominated
Sorting method (Srinivas and Deb, 1994), and vari-
ous versions of SPEA. Later, in Corne et al’s study
(2000), SPEA was compared with PESA and PAES.
PESA was found to be best overall, although on 75, the
deceptive problem, SPEA was slightly, but certainly,
the best of the algorithms compared.

4 Experimental Design

4.1 Experiments

Our experiments sought to determine the relative qual-
ity of PESA, SPEA, PAES and PESA-II, a version of
PESA which incorporates region-based selection, on
the Deb test functions. Parameter settings are given
in Table 1.

In the next section we summarise the statistical com-
parison method used to analyse the results within a
set of experiments.

4.2 Statistics

Given the results of several trial runs for each algo-
rithm, we compare the performance of two or more

0.7 in PESA, PESA-II and
SPEA; not used in PAES
uniform in PESA, PESA-II
and SPEA; not used in PAES
bit-flip rate set to 1/L where
L is chromosome length

Crossover rate

Crossover
method
Mutation rate

Populations archive 100 in all algorithms,
IP size 10 in PESA and SPEA

Chromosome 900 in 71, 72 and T3,

lengths 300 in 74 and T4, 80 in 75

32x32 grid in PESA, PESA-II
and PAES, not used in SPEA

Hyper-grid size

Table 1: Parameter settings

multiobjective optimisers using a method proposed
originally by Fonseca and Fleming (1995a) which we
have implemented with certain extensions. When com-
paring two multiobjective algorithms (A and B), this
method returns two numbers: the percentage of the
Pareto frontier on which A conclusively beats B (based
on a Mann-Whitney U test at the 95% confidence
level), and the percentage of the Pareto frontier on
which B beats algorithm A. For example, two well-
matched MOEAs might yield a result like [3.7, 4.1],
indicating that each algorithm was definitely better
than the other in small regions of the space, but they
performed similarly well on the majority of the Pareto
frontier. A clear indication that one algorithm is su-
perior to another, however, is given by a comparison
result such as [68.3, 2.2], or [100, 0.0].

In a comparison of more than two algorithms, the
comparison code performs pairwise statistical compar-
isons, as before, for each distinct pair of algorithms.
The results then show, for each algorithm, on what
percentage of the discovered Pareto frontier we can
be confident that it was unbeaten by any of the oth-
ers, and on what percentage of the space it beat all of
the others. For example, in Table 2, we can see that,
on problem 75, PESA-II was unbeaten by any of the
other algorithms individually on the entire Pareto sur-
face, and conclusively superior to all of the others on
27.4% of the Pareto Tradeoff surface.

5 Results and Discussion

Table 2 summarises all results for the set of experi-
ments in which each trial run was allowed 5,000 fit-
ness evaluations. The best performing algorithm for
each problem has its table entries highlighted in bold;
when there is little difference between the best two
(or all three), each such entry are highlighted in bold.



There are two rows for each problem; the first give the
unbeaten statistic for each algorithm, and the second
gives the beats all statistic. For example, on problem 7,
PESA-II was unbeaten by any of the other algorithms
on 100% of the combined Pareto frontier discovered
over all trials, and on this frontier it was significantly
superior to all of the others on 12.5% of it. In the
case of 7,PESA-II was so much better than the other
methods, we did additional trials to 20,000 evaluations
to see if the other methods could ‘catch up’.

[ Problem | PAES | SPEA | PESA | PESAI |

Ti 66.1 1.1 99.8 100
0 0 0 0

Ta 0 0 72.3 100

0 0 0 27.4

Ts 65.4 22.3 78.4 100
0 0 0 0

Ta 64.4 100 100 99.8
0 0.1 0 0

Ts 0 100 98.6 99.7
0 0 0 0

Te 16.7 74.5 18.8 100

0 0 0 12.5

Te-long 2.8 0.5 1.1 99.8

0.2 0 0 96.1

Table 2: Comparison of PAES, SPEA, PESA and
PESA-II at 5,000 evaluations (plus an extra compari-
son at 20,000 evaluations for 7

As Table 2 shows, PESA was clearly the best method
on three of the functions, and joint best with SPEA
on a further two. On the one remaining function
it achieved the second-best performance. SPEA is
clearly best on just one function, and joint best with
PESA on two. PAES is the worst performer here, be-
ing clearly worst on three of the test functions, and
second or joint second best on the remaining three.

The results are summarised in Table 3, in which we
show the rank for each algorithm on each problem.
The rank is simply one plus the number of algorithms
which clearly did better. For example, PAES has rank
3 for 7o since two algorithms (PESA and PESA-II)
performed better than it on this function.

With reference to both tables 2 and 3, PESA-II clearly
outperforms the other methods on the test functions
examined overall. The performance on the 7 s espe-
cially marked.

We will now briefly consider the differential perfor-
mance in terms of the 7 problem characteristics. 7o
is a straightforward problem, and we find that both

[ Problem | PAES | SPEA | PESA | PESAI |

T 3 4 1 1
Ta 3 3 2 1
Ts 3 4 2 1
T4 4 1 1 1
Ts 4 1 1 1
Te 4 2 3 1
Te-long 2 4 3 1

Table 3: Summary of PAES, SPEA, PESA and PESA-
IT comparisons on Functions 7;-Tg

PESA and PESA-II perform excellently on it, with
PAES doing well too, but SPEA doing rather badly.
Since the problem lacks deception, and PAES is essen-
tially a local search procedure, the good performance
of PAES, especially in comparison to SPEA, is under-
standable. SPEA, as hinted at in Section 2, and unlike
any of the other algorithms tested here, spends signif-
icant algorithmic effort in considering non-elitist solu-
tions. This strategy seems to be unnecessary for 7,
and seems to have prevented SPEA from performing
well on it in the available time. In contrast, SPEA’s
non-elitism is likely to be responsible for it maintain-
ing overall best performance on the deceptive prob-
lem, 7,, and also the highly multimodal problem, 7a.
Te has a concave front; this makes it non-trivial for
a local search based method and also seems to have
confounded the strength pareto approach; PESA and
PESA-II, especially the latter, perform very well on it.
PESA-II also particularly shines on the remaining two
problems, 75 and 7, which, respectively, have highly
discontinuous and highly non-uniform Pareto fronts.

6 Conclusion

We have described region-based selection as an alter-
native selection scheme for use in evolutionary mul-
tiobjective optimisation. We have implemented it
within PESA, although it may of course be employed
in most evolutionary multiobjective frameworks. Ex-
periments on functions from Deb’s test suite seem to
confirm that region-based selection is a very promising
technique. PESA-II, which employed the new selection
method, was only beaten (and then slightly) on two of
the test problems. These were the highly multimodal
problem, and the deceptive problem; hence, the rel-
atively low profile for region-based selection in these
cases can potentially be explained by the fact that
SPEA is non-elitist (a highly helpful feature in prob-
lems with such characteristics), while region-based se-
lection was implemented in an entirely elitist method



(PESA).

One promising avenue for further work would seem to
be the deployment of region-based selection in a non-
elitist framework. However this is not trivial; consid-
ering occupied hyperboxes in dominated regions of the
space requires us to have a way of preferring, for ex-
ample, a hyperbox on the Pareto frontier over a dom-
inated hyperbox which has the same number of occu-
pants. Another complicating factor is that a hyperbox
may contain both dominated and nondominated indi-
viduals. We are thinking along the lines of using the
Strength Pareto approach (Zitzler and thiele, 1999) to
deal with these issues. A simple alternative might be
to simply do region-based selection on the nondomi-
nated frontier most of the time, but for a portion of
the time select from dominated individuals based on
their strength Pareto fitnesses. A further alternative
would be to only use region-based selection, but ap-
portion algorithm effort between selecting in this way
from different Pareto frontiers, akin to the nondomi-
nated sorting approach (Srinivas and Deb, 1994).

There are runtime complexity issues which we have not
dealt with in this paper. For example, finding occupied
hyperboxes can be done quickly, though is not trivial.
Depending on the enclosing algorithm framework, the
hyperbox and related datastructures may or may not
need constant updating. Also, region-based selection
(and any hypergrid method) requires the choice of a
parameter to define the individual hyperbox dimen-
sions. NSGA-II (Deb et al, 2000), for example, re-
quires no such parameter. Preliminary investigations
suggest that results are not overly sensitive to the hy-
perbox dimension parameter, although much more in-
vestigation needs to be done to determine if this is
generally the case.
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