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Recently a cellular automaton (CA) has been used to model the dynamics
of HIV infection, with interesting results. We replicate and further test this
model, and we introduce an alternative model based on conformon-P (cP)
systems.

We find (in common with other recently published comments) that the CA
model is very sensitive to initial conditions and produces appropriate qualita-
tive dynamics only for a narrow range of rule probabilities.

In contrast, the cP system model is robust to a wide range of conditions
and parameters, with more reproducible qualitative agreement to the overall
dynamics and to the densities of healthy and infected cells observed in vivo.

1 Introduction

The infection by the human immuno-deficiency virus (HIV), the cause of ac-
quired immunodeficiency syndrome (AIDS), has been widely studied both in
the laboratory and with computer models in order to understand the different
aspects that regulate the virus-host interaction.

Several mathematical models have been proposed (for example [30,43,20]) but
all of them fail to describe some aspects of the infection. Typically, models
proposed so far have problems in maintaining biological plausibility at the
same time as producing a qualitative match to the known dynamics of the
concentrations of healthy, and dead cells, the source of the main difficulty being
that characteristic dynamics occur at two quite distinct timescales (over the
first few weeks, and over several years, respectively). A recent example is that
of [20], who integrates a CA approach with a graph percolation model, focusing
on HIV’s long-term dynamics and the distribution of incubation periods, but
this model does not account for the characteristic dynamics of the first few
weeks of infection.

However, the recent model reported by Dos Santos & Coutinho in [38], based
on cellular automata, clearly shows the different time scales of the infection
and has a broad qualitative agreement to the density of healthy and infected
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cells observed in vivo. The ability of this model to demonstrate the qualitative
agreement over two time scales sets it apart as a promising candidate for
further research. However, in [39] it is noted that this qualitative agreement is
reached only if some parameters are chosen in a small interval. If some of the
parameters are chosen outside this interval, then the cellular automata model
of [38] does not follow the dynamics of what is observed in vivo. Dos Santos
and Coutinho’s approach is therefore clearly of interest (as is also pointed out
in [39]), but it is unclear whether it fulfils the requirement for a model of HIV
dynamics that is both robust and qualitatively accurate.

In this paper we set out to investigate a new approach – conformon-P systems
– that has emerged from theoretical computer science (specifically from the
area of Membrane computing) and that can be used for modelling natural
processes. We therefore developed a cP system based model of HIV infection
dynamics, and we also replicated the Dos Santos and Coutinho CA model [38]
and performed many tests to determine their relative robustness to parameters
and the degree to which their results qualitatively echo the dynamics seen in
real data.

The paper proceeds as follows. In section 2 we further describe the two tech-
niques, cellular automata and cP systems, focusing on a full explanation of
the latter, which are less well known as a modeling paradigm. Section 3 then
describes the particulars of implementing a Dos Santos and Coutinho style
HIV infection model in each of these two systems. In section 4 we describe our
experiments and show the results, and we discuss these results in section 5.

2 The modeling platforms

2.1 Cellular automata

Cellular Automata (CA) are a regularly used platform for modelling, and are
increasingly explored as modelling tools in the context of natural phenom-
ena that exhibit characteristic spatiotemporal dynamics [40,4]. They became
popular in the 80s as tools for studying self-organisation in artificial systems
[44] and were primary in the development of the field known as Artificial Life
[24], while more recently there is a steady stream of research articles reporting
the use of various types of CA to model a variety of dynamic processes. Of
interest here, for example, are their use in modelling the spread of infection
[1,27,38,20,41].

A CA consists of a finite number of cells (invariably arranged in a regular
spatial grid), each of which can be in one of a finite (typically small) number
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of specific states. For example, in a model of disease in which the CA’s cells
happen to correspond to biological cells, identified states might be healthy,
infected, and dead. In the usual approach, at each time step t the status of the
CA is characterised by its state vector; that is, the state of each of the cells. In
the simplest type of CA, the state vector at time t + 1 is obtained from that
at time t by the operation of a single rule applied in parallel (synchronously)
to each cell. The rule specifies how the state of a cell will change as a function
of its current state and the states of the cells in its neighbourhood (see figure
6).

In many applications, including that addressed here, it is appropriate for the
rule to be probabilistic. That is, for each combination of a cell’s current state
and neighbourhood configuration, the rule provides a probability distribution
over possible next states. Also, it is natural to think of and implement this rule
as a number of individual nonconflicting rules, one for each possible ‘current
state’. Finally, CAs may also be ‘asynchronous’, in which individual cells are
chosen randomly (usually) and updated one at a time.

The straightforward nature of the time evolution of a CA, combined with its
emphasis on local interactions, has made it an accessible and attractive tool
for modelling many biological processes.

2.2 Conformon-P systems

The subdivision of a cell into compartments delimited by membranes has been
an inspiration to G. Păun for the definition of a new class of (distributed and
parallel) models of computation called membrane systems [32]. The hierarchi-
cal structure, the locality of interactions, the inherent parallelism, and also
the capacity (in the less basic models) for membrane division, represent the
distinguishing hallmarks of membrane systems.

Research on membrane systems, also called P systems (where ‘P’ stays for
‘Păun’), has really flourished [33,45].

In [11] a variant of membrane systems called conformon-P (cP) systems was
introduced. This variant, later studied also in [12,7,9,10], is based on simple
and basic concepts inspired by a theoretical model of the living cell centred
around conformon [18,19].

The concept of conformon was introduced in molecular biology independently
in [15] and [42]. The common part of the two definitions is the conformational
deformation of (macro) molecules in a cell.

A cP system has conformons, a name-value pair, as objects. If V is an al-
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phabet (a finite set of letters) and N0 is the set of natural numbers (with
0 included), then we can define a conformon as [α, a], where α ∈ V and
a ∈ N0, we will say that α is the name and a is the value of the conformon
[α, a]. If, for instance, V = {A,B, C, . . .}, then [A, 5], [C, 0], [Z, 14] are confor-
mons. To indicate several instances of the same conformon we will write (c, k),
where c is a conformon and k ∈ N ∪ {+∞}. So, for instance, we can write
([A, 1], 5), ([B, 0], +∞), etc.

Two conformons can interact according to an interaction rule. An interaction
rule is of the form r : α

n→ β, where r is the label of the rule, α, β ∈ V and
n ∈ N0, and it says that a conformon with name α can give n from its value to
the value of a conformon having name β. A rule r can be applied only if the
value of the conformon with name α is greater or equal to n. If, for instance,

there are conformons [G, 5] and [R, 9] and the rule r : G
3→ R, the application

of r leads to [G, 2] and [R, 12].

The compartments (membranes) present in a cP system have a label, every
label being different. Compartments can be unidirectionally connected to each
other and for each connection there is a predicate. A predicate is an element
of the set {≥ n,≤ n | n ∈ N0}. Examples of predicates are: ≥ 5,≤ 2, etc..
If, for instance, there are two compartments (with labels) m1 and m2 and
there is a connection from m1 to m2 having predicate ≥ 4, then conformons
having value greater or equal to 4 can pass from m1 to m2. In a time unit any
number of conformons can move between two connected membranes as long as
the predicate on the connection is satisfied. Notice that we have unidirectional
connections that is: m1 connected to m2 does not imply that m2 is connected
to m1. Moreover, each connection has its own predicate. If, for instance, m1

is connected to m2 and m2 is connected to m1, the two connections can have
different predicates.

A simple cP system is illustrated in Figure 1.

[X, 3] [C, 0]
[C, 0]

X
2→C C

2→X

conformons

≥ 1

≥ 3

≥ 3

interaction rules

m2

m3

labels
predicates

m1

Fig. 1. A cP system.

Conformon-P systems do not work under the requirement of maximal paral-
lelism, typical to the majority of the variants of P systems but, when their
activity is simulated by a computer, then probabilities are associated with
interaction rules and connections between membranes.
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Here we do not introduce the details (output membrane, acknowledgement
membrane, etc.) present in the definition of cP systems when used as a com-
puting platform. The investigations on these systems led to the characteri-
zation of an initial computational hierarchy composed of: basic cP system,
proper cP system, cP system with priorities, and cP system with unbounded
value.

Variations on the structural and related constraints of cP systems have clear
influences on their computational power. For example, it has been proved that
the computational power of cP systems with priorities and cP systems with
unbounded value are equivalent to that of so-called program machines [28],
that the power of cP systems is equivalent to that of partially blind program
machines, and that basic cP systems can only generate finite languages.

The use of (variants of) P systems to model various biological processes is
not new [45], this line of research in P systems was initiated by D. Besozzi
[3]. Conformon-P systems have been used to model simple biological processes
[10]. Here we focus on modeling and we use a grid of cP systems, i.e. a complex
cP system composed by cells, each cell being a simple cP system connected to
some other cells.

In Figure 2 a grid of cP systems is depicted.

≥ 3 ≥ 3

≥ 3 ≥ 3

[X, 3]

[X, 3][X, 3]

≥ 3
≥ 3≥ 3

≥ 3

≥ 3 ≥ 3

≥ 3 [X, 3]

X 2→C C 2→X X 2→C C 2→X

X 2→C C 2→X X 2→C C 2→X

≥ 3

≥ 1
≥ 3

≥ 1

≥ 3

≥ 3

≥ 1

≥ 3

≥ 1

≥ 3

≥ 3

[C, 0]
[C, 0]

[C, 0]
[C, 0]

[C, 0]
[C, 0]

[C, 0]
[C, 0]

Fig. 2. A grid of cP systems.

This way to create P systems (to our knowledge new in membrane computing)
resembles CA. In Section 5.1 we will highlight the differences between these
two formal systems.

2.2.1 Some modules for conformon-P systems

In the following we will use the concept of module: a group of membranes with
conformons and interaction rules in a cP system able to perform a specific
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task.

An example of module is a splitter [7]: a module that, when a conformon [X, x]
with x ∈ {x1, . . . , xh}, xi < xi+1, 1 ≤ i ≤ h − 1 is associated with a specific
membrane of it, it can pass such a conformon to other specific membranes
according to the value x. In Figure 3 a splitter is depicted.

≤ x2

x1

≤ x1 ≤ xh−1

xh−1 xh

≤ xh

u1 uh−1 uh

(a)

[X, x]

[X, x]

p

= xh

spl

= x1

u1 uh

(b)

u2

uh+1

p ≥ xh−1

uh+1

x2

≥ x2 ≥ x3 ≥ xh[X, x]

[X, x]

Fig. 3. A detailed Splitter (a) and its module representation (b)

The links between cells present in the cP systems described in Section 3.1 have
predicates of the kind [A, a] (a conformon). This is a shorthand for a separator
module [7]: when conformons of type [Xi, x], 1 ≤ i ≤ h, x ≥ 1 are associated
with specific membranes of it, a separator can pass them to specific different
membranes according to their name content. So if there is an edge between
membrane 1 and membrane 2 having [A, a] as predicate, it means that only
the conformons [A, a] can pass from membrane 1 to membrane 2. In Figure 4
a separator is depicted.

The combination of splitters and separators allows us to define the following
kind of interaction rules:

A(α) γ→ B(β) where α, β, γ ∈ N0, meaning that a conformon with name A can
interact with B passing γ only if the value of A and B before the interaction
is α and β respectively;

A
γ→ B(β) where β, γ ∈ N0, meaning that a conformon with name A can

interact with B passing γ only if the value of B before the interaction is β;
A(α) γ→ B where α, γ ∈ N0, meaning that a conformon with name A can
interact with B passing γ only if the value of A before the interaction is α.

A module has to be regarded as a function in a computer program. Moreover, a
module can be analysed according to its processing features and interconnected
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Fig. 4. A detailed Separator (a) and its module representations (b) and (c)

loops present in it; this allows us to classify processes modelled by cP systems
as a function of the used modules. This last point will be discussed in Section
5.1

3 The process and the models

We modeled the dynamics of HIV infection, following the description of this
process as indicated in [38,39].

The dynamics observed in HIV infections can be divided into three phases.
Initially the amount of virus in the host grows in an exponential way, then
the viral load drops to what is known as the “set point”, finally the amount of
virus in the host increases slowly, accelerating near the onset of AIDS. The first
two phases occur in the first weeks following the infection, the third phase can
last years. This is plotted in Figure 5 where each unit in the x axes represent
a week in time.

7



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  2  4  6  8  10  12  14

first weeks

"healty"
"infected"

"dead"

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 100  200  300  400  500  600

later years

healty

infected
dead

Fig. 5. Typical dynamics of HIV infection.

In [38] this process was modeled with a CA in which each cell could be in
any of four possible states: healthy, A-infected, AA-infected, and dead. In the
(random) initial configuration a cell had probability pHIV to be A-infected,
otherwise it is healthy.

Our CA model followed this implementation with minor differences, each of
which lead to equivalent behaviour. The main difference was that the state A-
infected was broken down into four separate states, A-infected1, A-infected2,
A-infected3, and A-infected4. In this way the CA controlled the change from
A-infected to AA-infected over τ = 4 time steps without the need to introduce
an additional counter-based mechanism in the CA’s operation. This was not
really necessary, but it enabled us to use a model that consisted of a simpler
and more straightforward CA framework, and reflected our desire to compare
relatively ‘pure’ versions of the CA and cP system approaches.

Where the term A-infected is used in the rules below, it is shorthand for the
combined set of A-infected1, A-infected2, A-infected3, and A-infected4 cells in
the neighbourhood.

I if a healthy cell has at least one A-infected neighbour, then it becomes
A-infected1 at the next time step;

II if a healthy cell has no A-infected neighbours but at least R AA-infected
neighbours, then it becomes A-infected1 at the next time step;

III an A-infected1 cell becomes A-infected2 at the next time step;
IV an A-infected2 cell becomes A-infected3 at the next time step;
V an A-infected3 cell becomes A-infected4 at the next time step;

VI an A-infected4 cell becomes AA-infected at the next time step;
VII an AA-infected cell becomes dead at the next time step;

VIII a dead cell becomes, at the next time step, either healthy (with probability
prepl×(1−pinfec)), or A-infected1 (with probability prepl×pinfec), or stays
dead (with probability 1− prepl).

The biological reasoning behind these rules is explained in [38]. Essentially,
rules I and II model the basic spread of viral infection from cells to neigh-
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bouring cells; rules III–VII model the short life of an infected cell, and the
last rule models the body’s continual replenishment of new healthy cells but
maintaining a small probability of infection.

In [38] the following parameters were chosen: pHIV = 0.05, prepl = 0.99, pinfec =
10−5, and R = 5; additionally, [38] had a parameter τ for indicating the num-
ber of timesteps after which an A-infected cell became AA-infected, and main-
tained τ = 4 throughout their work. This parameter setting is reflected in
our use of four separate A-infected states. They experimented with grids of
size ranging from 300 × 300 to 1000 × 1000, and the averaged results of 500
simulations reported in [38] on toroidal grids ranging from 700 × 700 show a
qualitative agreement to the density of healthy and infected cells observed in
vivo.

In [39] it is shown that this qualitative agreement is reached only for values
of the parameters close to the ones just indicated. If either pHIV < 10−2 or
pinfec is chosen in the range 10−2 to 10−4, then the CA model of [38] does not
follow the dynamics of what is observed in vivo.

3.1 Grid of Conformon-P systems

The construction of the grid of cP systems used by us closely follows the CA
defined in [38]. Each cell on the grid contains only one membrane (so in the
following, cell and membrane will have the same meaning). The set of rules
associate with each membrane can be divided in two parts: part 1 and part 2
(see Appendix A). The rules in each part are similar except in the probabilities
associated with them. In the following we will consider and describe the rules
in part 1, later on we will extend this description to the rules in part 2.

Each cell can be in one of five states: 1-healthy, A-infected, AA-infected, pre-
dead, and dead (in respect to the rules in part 1) identified by the presence
of the conformons: [H, 1], [A, 1], [AA, 1], [PD, 1], and [D, 1] respectively. If, for
instance, a cell is in an healthy state, then it will contain [H, 1], [A, 0], [AA, 0],
[PD, 0], and [D, 0] (similarly for the other cases). In the initial configuration
each cell contains the conformons ([R, 1], +∞), ([V, 10], +∞), ([E, 0], +∞), and
([W, 0], +∞).

If a cell is A-infected, then it can generate [V, 11] (meaning: if a cell is A-
infected it can generate a virus). This is performed by the rules:

1: R
1→ A(1) 2: A(2) 1→ V(10)

Notice that [V, 10] does not represent a virus, [V, 11] does.
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[V, 11] conformons can pass from a cell to any other in its neighbourhood
(meaning: viruses can spread between cells).

An 1-healthy cell can become A-infected if it contains a virus. This is performed
by the rules:

3: V
11→ H(1) 4: H(12) 12→ A(0) 5: A(12) 11→ W(0)

An AA-infected cell can generate [E, 1] conformons. These conformons can
pass to other cells and interact such that [E, 4] conformons are created. When
a [E, 4] conformon is present in an healthy cell, then it can become A-infected.

This process mimics rule II in Section 3 and it is performed by:

6: R
1→ AA(1) 7: AA(2) 1→ E(0) 8: E(1) 1→ E(1) 9: E(2) 2→ E(2)

10: E
4→ H(1) 11: H(5) 5→ A(0) 12: A(5) 4→ W(0)

and by the fact that [E, 1] can pass from one cell to any other in its neigh-
bourhood. From the rules 7, 8, and 9 it should be clear that only [E, 1], [E, 2],
and [E, 4] can be present in the system.

An A-infected cell can become AA-infected by the application of the rule:

13: A(1) 1→ AA(0)

An AA-infected cell can become dead. Before doing so it goes into the pre-dead
state in which the [V, 11], [E, 1], [E, 2], and [E, 4] conformons present in it are
removed. This is performed by the rules:

14: AA(11) 1→ PD(0) 15: V (11) 1→ PD(1) 16: E
1→ PD(1) 17: E

2→ PD(1)

18: E
4→ PD(1) 19: PD(1) 1→ D(0) 20: PD(2) 1→ W(0) 21: PD(3) 2→ W(0)

22: PD(5) 4→ W(0)

A dead cell can become 2-healthy cell by the application of the rule

23: D(1) 1→ H2(0)

The R and W conformons do not have a direct relation with any aspect of
HIV infection. In broad terms the R conformons can be regarded as ‘food’
molecules needed by a cell in a certain state to perform an action (for instance,
if A-infected to generate a virus). The W conformons can be regarded as
‘waste’ molecules to which some conformons can pass part of their value. As
W conformons only receive values from other conformons, their initial value
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is not relevant for the simulation.

As the simulation of a cP system is probabilistic we cannot be sure that when
a dead cell becomes 2-healthy all the viruses and E conformons have been
removed by the rules 15-18 and 20-22. In order to allow the removal of all
viruses and [E, 1] conformons from a pre-dead cell before it becomes dead, we
associate with rules 15-18 and 20-22 an higher probability than the probability
associated with rule 19 (see Appendix A). Anyhow, for lack of time, we did
not study how effective this difference in probabilities is.

The state 2-healthy, together with A2-infected, AA2-infected, 2-pre-dead, and
2-dead are managed by the rules in part 2. The rules in part 2 are similar
to the ones in part 1 but they have H2 instead of H, A2 instead of A, AA2
instead of AA, PD2 instead of PD, and D2 instead of D.

Most importantly, the probabilities associated with the rules in part 2 are
lower than the probabilities associated with the rules in part 1 (see Appendix
A).

Considering what we said in Section 3, rules in part 1 model the behaviour
of the first two phases of the dynamics of HIV infection, while rules in part 2
model the behaviour of the third phase.

It should be clear by the rules given above that a cell can only be in one of
the 10 possible states: this depends on how the interaction rules have been
devised.

4 Experiments and Results

The simulations performed with the CA were based on a toroidal 400 × 400
grid for every combination of the following parameters:

neighbourhood: von Neumann, Moore, diamond, as indicated in Figure 6, where
the grey squares represent the domain and the black square the co-domain of
the applied rules;

pHIV : 0.05, 0.00005;

pinfec: 0.00001, 0.00005.

The simulations performed with the cP system were based on a toroidal 50
× 50 grid for every combination of the following parameters. As discussed
in Section 5.1, the parameter pinfec is not directly equivalent to the similar
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a b c

Fig. 6. The considered neighbourhoods: (a) von Neumann, (b) Moore, (c) diamond.

parameter as used in the CA, but the chosen values, in the context of how the
cP system operates, lead to a like-for-like comparison:

neighbourhood: von Neumann, Moore, diamond, as indicated Figure 6 where
a black cell can pass conformons to any of the grey cells;

pHIV : 0.05, only 1 cell (i.e. 0.0004);

pinfec: 0.2, 1 (see Section 5.1 for a discussion on the choice of this parameter).

All simulations were run 10 times with different random number sequences.

We note that we also performed simulations of the CA model on a toroidal
50 × 50 grid, but these exhibited the three-phrase dynamics in only 3 of 120
runs. Finally, the choice of grid size for the CA was based on preliminary
investigation using the [38] parameter set, which indicated that a toroidal
400 × 400 grid was the smallest at which the three-phase dynamics would
be regularly observed (this dependence on grid size is material, and will be
briefly discussed later). Meanwhile, the choice of grid size for the cP system
was based on the pragmatics of the available software.

4.1 Cellular automata results

The outcome of the tests based on the CA can be divided into three categories:
match with the expected results, lack of the first two phases, and lack of the
third phase.

Only a few of the tests using the same parameters considered in [38] (Moore
neighbourhood, pHIV = 0.05, and pinfec = 0.00001) resulted in the expected
curve. Similar results were present if the von Neumann neighbourhood was
considered; in the diamond neighbourhood more of the tests showed the ex-
pected dynamics.

All the tests with pHIV = 0.00005 rendered a result lacking the first two phases
(this conforms with what was reported in [39]). The only choice of parameters
that clearly qualitatively adhered to the expected results were when pHIV =
0.05 and pinfec = 0.00005. When the qualitative agreement is present it strictly
follows that indicated in [38] (see Figure 5), the only exception is when von
Neumann neighbourhood is chosen together with pHIV = 0.05 and pinfec =
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0.00005.

4.2 Conformon-P systems results

In the vast majority of the tests we run the three phases of the dynamics of
HIV are clearly visible (see Figure 7).
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Fig. 7. Typical outcome for cP systems.

Only in two of the 120 tests the third phase is anomalous: all cells are healthy.
This happened with the Moore neighbourhood, pHIV = 0.05, pinfec = 1, and
with diamond neighbourhood, pHIV = 1 cell, pinfec = 0.2.

The outcome of the remaining tests does not have remarkable differences de-
pending on the value of pinfec, it does have differences depending on the value
of pHIV . If only one infected cell is present in the initial configuration, then
the curves of infected and healthy cells in the first two phases are smoother.
The maximum value reached in these two phases by the number of infected
cells is lower than when pHIV = 0.05; in a similar way the minimum value
reached in these two phases by the number of healthy cells is higher than
when pHIV = 0.05. These maximum and minimum depend on the considered
neighbourhood: the smaller the number of neighbours, the smoother the func-
tion. This can be seen by the plot of the average results for the first two phases
for each neighbourhood present in Figure 8.

When pHIV = 0.05 the maximum reached by the number of infected cells in
the first two phases is around 2300 (92% of the number of cells), while the min-
imum reached by the number of healthy cells is around 10 (0.4% of the number
of cells). When only one infected cell is preset in the initial configuration in
a von Neumann neighbourhood these values are around 1650 (66%) and 325
(13%) respectively; in a Moore neighbourhood these values are around 1750
(70%) and 230 (9.2%) respectively; in a diamond neighbourhood these values
are around 1900 (76%) and 164 (6.5%).
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Fig. 8. Average dynamics of the three neighbourhoods of the first two phases of
infection when the initial configuration has only one infected cell.

There is a qualitative agreement between our results for the density of healthy,
infected, and dead cells and the in vivo observations. There are only two dis-
crepancies:

(1) the time evolution does not follow what is observed in vivo: the first two
phases (first 10 weeks of the dynamics) can be associated with the first
500 iterations, while in the third phase we can match 1000 iterations with
one year;

(2) the number of infected and healthy cells at the end of the third phase is not
in accordance with the observed values. The averaged values reported in
[38] see the infected cells being at 70% density while the healthy and dead
cells are both at 15%. Our average results see the infected cells density
at 60%, and the healthy cells density at 34%, the dead cells being 6% of
the total population.

In order to address these points we believe we can ‘tune’ the cP system by
changing some of the probabilities associated to the interaction rules in part
2.

We will study how the number of events (interaction and passage rules) needed
to the cP system to simulate a step in the CA model influences the outcome
of the cP system. This is related to the fact that in the CA model almost all
rules are performed in one time step, while the number of events in the cP
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system simulating the CA rules is not always the same. For instance, rule I of
the CA model is simulated by several events while rule VI in the CP model is
simulated by one interaction rule in the cP system.

These studies will be done in the context of our ongoing research in under-
standing how to craft cP systems operations to model a given pattern.

5 Concluding remarks

5.1 CA and conformon-P systems

As indicated in Section 2.2 grids of cP systems resemble CAs. In particular,
the style of cP system described bears a loose resemblance to a Lattice Gas
Cellular Automaton (LGCA); these are CA models which involve ‘particles’
moving around on a lattice, and, following the earliest such model [16] which
was set up to study ergodicity in fluids, they are now commonly used in fluid
dynamics [37].

In computer science terms, there is much that could be said about the relative
raw computational abilities of CAs, LGCAs and cP systems (especially cP
systems, since these are primarily abstract computing devices and have been
mostly studied in that light). The differences between their computational
capabilities are a complex function of their relative structure and operations,
and it can also arguably be said that many of the distinctions that can be
made are of limited interest to those whose aim is to model biological sys-
tems. However, there are three aspects that we argue are of importance to
bioscientists and computer scientists alike.

The first, which we will not cover further in this paper, concerns understanding
the kinds of computation performed in nature; it is of interest, for example,
to discover what is the ‘simplest’ (in some sense) computational model that
can reliably replicate a certain observed natural process.

The second is the degree to which a modelling approach provides a framework
that can be easily used and has robust, repeatable behaviour.

The third concerns the theoretical bases and the possibilities to analyse the
approach; if the approach comes along with a strong theoretical background
and associated analysis techniques, it becomes easier to reason about the space
and time requirements of planned simulations, certain predictable aspects of
the results, and so forth.

Cellular Automata are certainly highly accessible modelling tools and we be-
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lieve this has much to do with their popularity. However they are not always
the appropriate choice. The lack of robustness in the present case, suggests
that the CA model does not adequately capture the dynamics of the process
under study, although we have not examined robustness to parameters and
reliability at considerably larger grid sizes.

In contrast, when modelling a natural process, the translation of plausible
rules and related knowledge into the cP system framework is less direct and
consequently less accessible, however we believe that the results indicated
above show that it can be worth the effort.

Most importantly the cP systems can be analysed with several complexity
measures. Dynamical properties of cP systems can be easily studied with the
use of Petri nets. In contrast, the analyses of CAs to date ([4], chapter 4) have
been done with a variety of approximations that yield statistical distributions
for the state vector (see section 2.1) that are plausible only in simple cases.

Analyses of the dynamical properties of cP systems are not yet mature, how-
ever. There is only an initial study of the dynamical behaviour of membrane
systems [46,34,17,22,9] and no study of the dynamics of a grid of P systems
has been done to date. Meanwhile, in [9] the dynamics present in cP systems
are analysed with Petri nets [36].

As cP systems allow a precise analysis of the modeled processes and as their
dynamics can be easily studied with Petri nets, then we expect in future to
have a deeper and more precise understanding of the processes modeled by
(grids of) cP systems. We could, for instance, classify processes according to
the modules present in the (grid of) cP systems used to simulated them.

Another measure of behaviour for cP system is loop number and topology. A
loop is related to the path followed by a conformon (where only the name but
not the value is considered) during a computation. In Figure 1, for instance,
the X conformon can pass from membrane m1 to membrane m2 and then
back to membrane m1. So, in that system, the X conformon can move in a
loop. In [8] it is indicated that two loops are connected if one can be completed
only if the other is taking place. We are going to study how the number of
loops, their connections and topology are related to the behaviour of models
of (grids of) cP systems.

One more measure of complexity that we will consider will be applied only to
grids of cP systems and it concerns changing them (their interaction rules, pas-
sage rules, and conformons) according to some probabilistic variables. Starting
from a (‘original’) grid of cP systems having a specific behaviour we will create
other (‘clones’) similar grids of cP systems in which the presence of interac-
tion rules, passage rules, and conformons is probabilistic. Then we will link the
differences in behaviours of the ‘clones’ to the ‘original’ to the used probabil-
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ities. This line of research is inspired by S. Kauffman’s work on autocatalytic
set theory (see, for instance [21]) described at the time as a novel approach
concerning the origin of life.

If we consider the grid of cP systems described in this paper, then we could ask
the following questions: How does the outcome of the model change in respect
to probabilities associated to interaction rules/passage rules/conformons? Are
there probabilities thresholds (as the ones found by Kauffman) below which a
given grid does not exhibit the desired outcome? How are the probabilities of
interaction rules, passage rules, and conformon related in systems exhibiting
the desired outcome?

We used the simulator for cP systems described in [10]. This simulator was
not created having in mind grids of these systems, so it is not optimized in
this respect (for instance, the rules present in each membrane in the grid are
present in as many copies as the number of cells in the grid while they could
be present in just one copy). This ‘bug’ did not allow us to use grids of bigger
size for the simulations. Anyhow, it is noteworthy that the size of the grid for
cP systems, 50 × 50, was sufficient to yield robust behaviour in the present
study. In contrast, tests of the CA on a 50 × 50 grid almost invariably led to all
cells in the healthy state after the first few generations, which was maintained
throughout the run.

Concerning grid size in particular, we make a note here about the point in
phase three at which the infected cell density begins rapidly to rise and the
healthy cell density begins rapidly to fall (corresponding to the onset of AIDS).
In the Dos Santos and Coutinho model, it is noted [38,39] that this point is
closely associated with the chance appearance of a particular small ‘pattern’ of
cell states in the grid, which leads directly to expanding ‘waves’ of infected cells
(see figure 7, left, which shows a corresponding pattern from our CA model).
The chance of the ‘seed’ pattern occurring is clearly related to size of the grid
and the probabilities in the rules, as well as dependent on the synchronous
nature of the CA, and seemingly tied to the context of a regular lattice. In
contrast, the cP system model does not seem to rely on such factors. Figure 7
(right) shows the grid of a cP system run, sampled at a point corresponding
to when the CA run in the left figure was sampled, the point at which the
density of infected cells became higher than the density of healthy cells.

What in the CA is a single event (i.e., a healthy cell becoming A-infected1), in
the cP system is distributed over a sequence of events (interaction and passage
rules) that can be argued to more finely mimic what happens in reality. We
believe this hints at the reasons for the considerable difference in robustness
between the two systems. In effect, the cP system model is more fine-grained
in its treatment of time.
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Fig. 9. Healthy=white, infected=grey, dead=black.

Anyhow, the high level of accuracy possible with cP systems does not have to
be considered an absolute advantage. It is well known that a good model needs
to have an appropriate balance between the level of details and abstractions
[29]. We think that the use of modules in cP systems allows to easily tune this
balance.

As indicated in Section 2.2.1 a module can be regarded as a function in a
computer program. So it is possible to describe how (a module of) a cP system
can perform a specific action. This action can then be regarded as an atomic
event (eventually with a probability associated with it) in a more abstract
cP system. Of course we do not think that this feature is a prerogative of cP
systems. What we do think is that, in respect to other formal systems, cP
systems are based on simpler operations and concepts (interaction between
conformons, locality of interaction, and passage of conformons between local
compartments) that anyhow do not limit their potential.

More then with modules the way to operate of cP systems can be comple-
mented by algorithms approximating such processes as the ones described in
[13,14,25]. A similar approach has been already investigated in P systems (for
instance, [2,31]).

We did not pursue yet a precise study in trying to understand how the sequence
of operations (interaction and passage rules) and the probabilities associated
with them are related to the dynamics of HIV infection. These rules and
component probabilities were designed, in the context of how the cP system
operates, to match the corresponding parameter settings in the CA. However
we need to more clearly set out and specify the relationship between the
formulation of these operations and the process being modelled. This is our
next first priority in this line of research. This understanding will allow us
to model in a more accurate way processes and to understand better their
dynamics. It is for this reason that in order to increase pinfec we only changed
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the probabilities associated with rules 27 and 32.

5.2 Why conformon-P systems?

The tile of this section repeats a question that it is often asked to one of the
authors. Here we give a comprehensive answer.

In Membrane Computing the main trend in analysing the computing power of
a biological process has been to introduce a new variant of membrane systems,
not to modify an already existing model. This has led to a proliferation of
very specific variants at the expense of a global understanding of the features
present in the processes having similar properties.

Conformon-P systems originate by the combination of a theoretical model of
the living cell and membrane computing. Their definition is simple and very
general and can easily fit the description of many biological process (they
are not limited to cellular processes) and be used for the creation of abstract
computing systems. One of their strengths relies in their abstract description:
a conformons can be anything in a process. This is very different from other
models of membrane systems defined and tailored for a specific process.

Because of their abstract description the laws deducted from a cP system with
some feature remain valid for all the cP systems with the same features inde-
pendently from the process they model. On the other hand the laws deducted
from a variant of membrane systems defined for a specific process are only
valid in the limits of that process.

In recent years a lot of effort has been devoted to looking at nature through
‘glasses of computation’: processes present in nature have been classified ac-
cording to their computational potential or interpreted as computation [5,35,23].
This research has led to very promising results but limited to the investigated
processes.

There is no ‘global framework’ able to unify in a structured way the various
degrees of ‘computation’ present in nature. This global framework has to be
powerful (able to simulate computation at any level), flexible (able to abstract
a wide range of processes), and subject to the study of several complexity
measures.

We believe that conformon-P systems could be such a ‘global framework’.
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6th International Workshop on Membrane Computing WMC6, volume 3850 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New
York, 2006.

[7] P. Frisco. The conformon-P system: A molecular and cell biology-inspired
computability model. Theoretical Computer Science, 312(2-3):295–319, 2004.

[8] P. Frisco. Infinite hierarchies of conformon-P systems. In Seventh Workshop
on Membrane Computing (WMC7), Leiden, The Netherlands, July 17-21 2006,
2006.

[9] P. Frisco. P systems, Petri nets, and Program machines. In Freund et al. [6],
pages 209–223.

[10] P. Frisco and R. T. Gibson. A simulator and an evolution program for
conformon-P systems. In SYNASC 2005, 7th International Symposium on
Simbolic and Numeric Algorithms for Scientific Computing, pages 427–430.
IEEE Computer Society, 2005. Workshop on Theory and Applications of P
Systems, TAPS, Timisoara (Romania), September 26-27, 2005.

20



[11] P. Frisco and S. Ji. Conformons-P systems. In M. Hagiya and A. Ohuchi,
editors, DNA8, 8th International Meeting on DNA Based Computers, Hokkaido
University, Sapporo, Japan, June 10-13, volume 2568 of Lecture Notes in
Computer Science, pages 291–301. Springer-Verlag, Berlin, Heidelberg, New
York, 2002.

[12] P. Frisco and S. Ji. Towards a hierarchy of info-energy P systems. volume 2597
of Lecture Notes in Computer Science, pages 302–318. Springer-Verlag, Berlin,
Heidelberg, New York, 2002.

[13] D. T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J.Comp. Phys, 22:403–434, 1976.

[14] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem, 81:2340–2361, 1977.

[15] D. E. Green and S. Ji. The electromechanical model of mitochondrial structure
and function. Molecular Basis of Electron Transport, pages 1–44, 1972. J.
Schultz, B. F. Cameron (eds).

[16] J. Hardy, Y. Pomeau, and O. de Pazzis. Time evolution of a two-dimensional
model system, 1. Invariant states and time correlation functions. J. Math Phys.,
14:1746–1759, 1973.

[17] O. H. Ibarra, Z. Dang, and O. Egecioglu. Catalytic P systems, semilinear sets,
and vector addition systems. Theoretical Computer Science, 312(1-2):379–399,
2004.

[18] S. Ji. The Bhopalator: a molecular model of the living cell based on the
concepts of conformons and dissipative structures. Journal of Theoretical
Biology, 116:395–426, 1985.

[19] S. Ji. The Bhopalator: an information/energy dual model of the living cell (II).
Fundamenta Informaticae, 49(1-3):147–165, 2002.

[20] C. Kamp and S. Bornholdt. From HIV infection to AIDS: a dynamically induced
percolation transition? Proceedings of the Royal Society B: Biological Sciences,
269(1504):2035–2040, 2002.

[21] S. Kauffman. At Home in the Universe. Oxford University Press, New York,
1996.

[22] J. Kleijn, M. Koutny, and G. Rozenberg. Towards a Petri net semantics for
membrane systems. In Freund et al. [6], pages 292–309.

[23] L. F. Landweber and E. Winfree, editors. Evolution as computation. Natural
computing series. Springer Verlag, Berlin, Heidelberg, New York, 1999.

[24] C. G. Langton. Studying artificial life with cellular automata. Physica D,
2(1-3):120–149, 1986.

[25] T. Lu, D. Volfson, L. Tsimring, and J. Hasty. Cellular growth and division in
the Gillespie algorithm. IEE Systems Biology, 1:121–127, 2004.

21
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A Rules, links, and probabilities

part 1 part 2

label rule prob. label rule prob.

1 R
1→ A(1) 1 24 R

1→ A2(1) 0.2

2 A(2) 1→ V(10) 1 25 A2(2) 1→ V(10) 0.0075

3 V
11→ H(1) 1 26 V

11→ H2(1) 0.0075

4 H(12) 12→ A(0) 1 27 H2(12) 12→ A2(0) 0.2

5 A(12) 11→ W(0) 1 28 A2(12) 11→ W(0) 0.2

6 R
1→ AA(1) 1 29 R

1→ AA2(1) 0.2

7 AA(2) 1→ E(0) 1 30 AA2(2) 1→ E(0) 0.2

8 E(1) 1→ E(1) 1

9 E(2) 2→ E(2) 1

10 E
4→ H(1) 1 31 E

4→ H2(1) 0.0075

11 H(5) 5→ A(0) 1 32 H2(5) 5→ A2(0) 0.2

12 A(5) 4→ W(0) 1 33 A2(5) 4→ W(0) 0.2

13 A(1) 1→ AA(0) 0.25 34 A2(1) 1→ AA2(0) 0.0625

14 AA(11) 1→ PD(0) 1 35 AA2(11) 1→ PD2(0) 0.2

15 V (11) 1→ PD(1) 1 36 V (11) 1→ PD2(1) 0.2

16 E
1→ PD(1) 1 37 E

1→ PD2(1) 0.2

17 E
2→ PD(1) 1 38 E

2→ PD2(1) 0.2

18 E
4→ PD(1) 1 39 E

4→ PD2(1) 0.2

19 PD(1) 1→ D(0) 0.008 40 PD2(1) 1→ D2(0) 0.08

20 PD(2) 1→ W(0) 1 41 PD2(2) 1→ W(0) 0.2

21 PD(3) 2→ W(0) 1 42 PD2(3) 2→ W(0) 0.2

22 PD(5) 4→ W(0) 1 43 PD2(5) 4→ W(0) 0.2

23 D(1) 1→ H2(0) 0.008 44 D2(1) 1→ H2(0) 0.02

Links:
[V, 11] can pass with probability 1 from any cell to any of its neighbours; [E, 1]
can pass with probability 0.01 from any cell to any of its neighbours.
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