Selected Applications of Natural Computing

David Corne, Heriot-Watt University, UK
Kalyanmoy Deb, IIT Kanpur, India

Joshua Knowles University of Manchester, UK
Xin Yao, University of Birmingham, UK

1. Introduction

The study of Natural Computation has borne sevieditls for science, industry
and commerce. By providing exemplary strategiesdd&signing complex biologi-
cal organisms, nature has suggested ways in whicham explore design spaces
and develop innovative new products. By exhibitexamples of effective co-
operation among organisms, nature has hinted aticeas for search and control
engineering. By showing us how highly interconndatetworks of simple bio-
logical processing units can learn and adapt, edtas paved the way for our de-
velopment of computational systems that can disodte between complex pat-
terns, and improve their abilities over time. Ahé tist goes on.

It is instructive to note that the methods we Us# have been inspired by na-
ture are far more than simply ‘alternative appr@scio the problems and applica-
tions that they address. In many domains, natwseHiad methods have broken
through barriers in the erstwhile achievements aaghbilities of ‘classical’ com-
puting. In many cases, the role of natural insygrein such breakthroughs can be
viewed as that of a strategic pointer, or a kindiefbreaker’. For example, there
are many, many ways that one might build complextirparameter statistical
models for general use in classification or predicthowever, nature has exten-
sive experience in a particular area of this desjgace, namely neural networks —
this inspiration has guided much of the machinenieg and pattern recognition
community towards exploiting a particular style sttistical approach that has
proved extremely successful. Similar can be saithefuse of immune system
metaphors to underpin the design of techniquesdétect anomalous patterns in
systems, or of evolutionary methods for design.

Moreover, it seems clear that natural inspiratias m some cases led to the
exploration of algorithms that would not necesyanidve been adopted, but have
nevertheless proven significantly more successh @alternative techniques. Par-
ticle swarm optimisation, for example, has beemtbanormously successful on a
range of optimisation problems, despite its natimagpiration having little to do
with solving an optimisation problem. Meanwhile,ofxtionary computation, in
its earliest days, was subjected to much sceptieisthgeneral lack of attention —



why should a method be viable for real-world profdewhen that method, in na-
ture, seems to take millions of years to achieseeitds? What need is there for
slow methods that rely on random mutation, whessital optimisation has a ma-
ture battery of sophisticated techniques with somathematical bases? Neverthe-
less, evolutionary methods are now firmly estalglishthanks to a long series of
successful applications in which their performaiscenmatched by classical tech-
nigues.

The idea of this chapter is to present and disaussllection of exemplars of
the claims we have made in this introduction. Wk bk at a handful of selected
applications of natural computation, each choserafeubset of reasons, such as
level of general interest, or impact. We will calei some classic applications,
which still serve as inspirational to current pith@ters, and we will look at some
newer areas, with exciting or profound prospectste future.

The applications are loosely clustered into folentkes as follows. We start
with applications under the banner of ‘Strategi@s'which we look in detail at
three examples in which natural computing methaglgehbeen used to produce
novel and useful strategies for different entegwisThese include an evolution-
ary/neural hybrid method which led to the generatiban expert checkers player,
the use genetic programming to discover rulesif@arfcial trading, and the eploi-
tation of a learning classifier system to generateel strategies for fighter pilots.
The next theme is ‘Science and engineering’ in Whie consider applications
that have wider significance for progress in onenore areas of science and engi-
neering, in areas (or in ways) that may not beitiathlly associated with natural
computing. Our two exemplars in this area are tbe of multiobjective evolu-
tionary computation for a range of areas (oftetha bio and analytical sciences)
for closed-loopoptimization, and the concept ioinovization which exploits mul-
tio-objective evolutionary computation in a way tthe@ads to generic design in-
sights for mechanical engineering (and other) mots. We then move on to a
‘Logistics’ theme, in which we exemplify how natumputing (largely, learn-
ing classifier systems and evolutionary computatioas provided us with suc-
cessful ways to address difficult logistics probte(we look at the case of a real-
world truck scheduling problem), as well as a waylésign new fasilgorithms
for a range of logistics and combinatorial probleria approaches we refer to as
‘super-heuristics’ and/or ‘hyper-heuristics’. Filyalwe consider the theme of ‘De-
sign’, and discuss three quite contrasting examflesse are, in turn, antenna de-
sign, Batik pattern design, and the emerging afesftware design using natural
computing methods.

2 Strategies: Generating Expert Pilots, Players,ral Traders

Many problems in science and industry can be foated as an attempt to find a
good strategy. A strategy is, for our purposestaotrules (or an algorithm, or a



decision tree, and so forth) that sets out whataon a variety of situations. Ex-
pert game players are experts, presumably, bethegeise good strategies. Simi-
lar is true for good pilots, and successful stocckat traders, as well as myriad
other professionals who are expert in their paldicdomain. It may well come as
a surprise to some that humans do not have theMast on good strategy —
strategies can be discovered by software whiclsome cases, can outperform
most or even all human experts in particular fieldsthis section we will look at
three examples of applications in which stratepege been developed via natural
computing techniques, respectively for pilotinghfigr aircraft, for playing expert-
level checkers, and for trading on the stock market

2.1 Discovery of Novel Combat Maneuvers

In the early 90s and beyond, building on fundingmart from NASA and the

USAF, a diverse group of academics and enginedtasbooated to explore the
automated development of strategies for pilotimdtéer aircraft. A broad account
of this work (as well as herein) is available asitBnet al (2002). The natural
computing technology employed is termed ‘genetiaseldd machine learning’
(GBML), the most common manifestation of whichlig tearning classifier sys-

tem— essentially a rule based system that adaptstower with an evolutionary

process central to the rule adaptation strategthitnwork, such an adaptive rule-
based system takes the role of a test pilot. Inéhgainder of this section we will
cover some of the background and motivation fog #pplication, as well as ex-
plain the computational techniques used, and ptessne of the interesting and
novel results that emerged from this work.

Background: New Aircraft and Novel Maneuvers

As explained in Smith et al (2002), a standard eagn, when developing a new
fighter aircraft, is to make a prototype for expggntation by test pilots, who then
explore the performance of the new aircraft angydrtantly, are then able to de-
velop combat maneuver strategies in simulated cormdxenarios. Without such
testing, it is almost impossible to understand lBomew aircraft will actually per-
form in action, which in turn depends, of course,how it will be flown by ex-
perienced pilots. In particular, it is very impartahat pilots are able to develop
effective and innovative combat strategies thataighe technology in the new
craft. Following such testing, issues in performeaace then fed back into the de-
sign process, and perhaps the prototype will neetiet re-engineered, and so
forth. This testing process is obviously very exgie® — costing the price of at
least one prototype craft, and the time of higtdjled pilots. One way to cut this
cost includes using a real pilot, but to ‘fly’ arsilation of the new craft; another is



to resort to entirely analytical methods; howevethbof these approaches are
problematic for different reasons (Smith et al, 200he idea of Smith et al's re-
search is to explore a third approach, in whicheglmme learning system takes the
place of a test pilot, and operates in the corgésbphisticated flight simulations.

To help better understand the motivation for thesky and grasp the im-
portance of developing novel maneuvers, it willuseful to recount some back-
ground in fighter aicraft piloting. This is adaptadxt from Smith et al (2002),
while a comprehensive account is in Shaw (1998)elatively new aspect of
modern fighter aircraft is the use of post-stathieology (PST). This refers to sys-
tems that enable the pilot to fly at extremely hagigles of attack (the angle be-
tween the aircraft's velocity and its nose-tailgxiPilots have developed a range
of combat maneuvers associated with PST flightluding, for example, the
Herbst Maneuver, in which the aircraft quickly reses direction via a combina-
tion of rolling and a high angle-of-attack. In amet example, the Cobra Maneu-
ver, the aircraft makes a very quick pitch-up frborizontal to 30 degrees past
vertical; the pilot then pitches the aircraft's @@own and resumes normal flight
angles. This causes dramatic deceleration, meahiiga pursuing fighter will
overshoot. The technologies that allow PST flightvé led to the invention of
these and several other maneuvers, as well asé¢lalence of tactics that involve
‘out-of-plane’ maneuvering, where the attackingcwdft flies in a continually
changing maneuvering plane, invariably differerdanirthe plane of the target
craft. This link between new technologies and neawmeuvers is critical in the de-
sign and deployment of new aircraft, and is theugoof Smith et al’s work. The
results that are described later involve experisiémtwhich the attacking craft
was an X-31 experimental fighter plane, with sofitééed PST capability, and
where the target craft in the simulations was dr8F-

Learning Classifier Systems

Learning classifier systems (LCSs: Holland etl8B6; Grefenstette, 1988; Gold-
berg, 1989; Holland, 1992) use a collection of sutalledclassifiersin the form
of state/action pairs. Each such pair indicateadion to take if the environment
currently matches the ‘state’ part of the rule. IABS operates in an environment
according to its current set of classifiers, andsugeinforcement learning and
other adaptation methods, in particular includirenefic algorithms (GAs), to
gradually adapt the rules over time. Classicallg|essifier in an LCS represents
states and actions as binary strings, but statgsatsa contain ‘don’t care’ char-
acters (#s). For example, the string: “0 1 0 #QLY 0" is a classifier with the
meaning: “If the environment is in state 0 1 0 Oristate 0 1 0 1 1, then perform
action 01 0".

In a typical LCS, each cycle begins with a messagresenting the state
of the environment (as we will see, the environmante fighter plane combat
context is simply a characterisation of the relatpositions and velocities of the
aircraft in the simulation). The LCS then sees Wwhif its classifiers match this



environmental message. There may of course beaeesd some form of con-
flict resolution method must then be invoked toideowhich classifier's action
will be executed. The action eventually choseméntperformed. This action may
lead to a reward — i.e. some aspect of the envieminecomes (more) favourable,
and the classifier which led to this action receiwn increment to its ‘fitness’
score. In some classifier systems, sophisticateditcallocation systems are in
place to ensure that the most recent action doeseuessarily receive all of the
credit. After some specified number of cycles, gemetic algorithm is invoked.
The GA population is formed from a subset of thessifiers, focussing on those
with higher fitness. New classifiers are producgdstandard genetic operations
on selected classifiers (where, naturally, selactiobiased by fitness), and these
are then incorporated into the LCS, over-writingnsoof the less fit existing clas-
sifiers. Clearly, an LCS operates in a way thagrafits to find — via the GA,
which is in turn informed by the fitnesses of cifisss, which in turn are informed
by experience in the environment — a good setadsifiers that achieves contin-
ual rewards in its environment.

Implementation, experimentation details, and resul

The way that LCS technology has been used, withsiderable and long-
established success in the domain of combat maneliseovery (Smith & Dike,
1995; Smith et al, 2002), is basically as followse task faced by the LCS is
(typically) a one on one engagement for a speaifiount of time, such as 30 sec-
onds. There is a specified initial configurationpafsitions and velocities, and the
period is divided into periods of 0.1 seconds ,(each action of the classifier pilot
must last for at least 0.1 seconds before anottemacan be performed). At each
of the (typically) 300 timesteps during a simulatieach aircraft observes the cur-
rent configuration, and decides on an action. Atehd of an engagement, a score
can be calculated based on the relative probasilitif the two aircraft having
damaged their opponents.

All Smith et al's experiments employed AASPEM, thie-to-Air System
Performance Evaluation Model developed by the G&ernment for computer
simulation of air-to-air combat. The encoding o state/action parts of a classi-
fier were as follows. The state part of a classifiemprised 20 bits: 6 bits were
used to encode the two ‘aspect angles’ that gazectinrent relative positions of
the aircraft in terms of their lines of sight. Tiemaining 14 bits were used to en-
code 7 parameters (hence, each discretised intms}, mamely: range, speed,
delta speed, altitude, delta altitude, climb angfgyonent’s climb angle. The ac-
tion part of a classifier comprised 8 bits, encgdtparameters: a relative bank
angle (3 bits), an angle of attack (3 bits) angbees (2 bits). Speed, for example
was either 100 knots (00), 200 knots (01), 350 &r{t0) or 480 knots (11). The
meaning of an action that specified (for exampieative bank angle of 30 de-
grees and speed of 200 knots, was to aim for theskesired targets. In all cases,



the simulation environment (i.e. the AASPEM systevould automatically inter-
pret these aims into realistic actions.

A set of such classifiers therefore representerel strategy, and sub-
sets of related classifiers can potentially encexalére novel maneuvers. During a
simulated engagement, the classifiers are run ®0r &/cles, as described; when
no classifier matches the current environmentafigoration, a default action for
straight, level flight is used. When more than ofessifier is matched, the fittest
one is chosen as the provider of the action. Atetié of the 300 cycles, a fithess
measure is calculated. Following experiment withiotss approaches, the most
promising fitness measurement was found to be besetie difference between
the self and the opponents’ ‘aspect angles’. Thsdally gives a score that is a
linear function along the continuum froself is aiming directly at opponent’s tail
to opponent is aiming directly at self's taiith the former obviously preferred.
The fitness assigned after an engagement was losistte average of this value
over the entire engagement, and is assigned ty éwdividual classifier that was
active at any point during the engagement

Following a full engagement, the GA then operawes the whole popu-
lation of classifiers. Using a moderate selectiogspure for parents, and standard
crossover and mutation operations, a collectiome# classifiers is generated.
The fitness assigned to a new classifier is sintply average of its parents’ fit-
nesses. Typically, about half of the classifieraipopulation were replaced with
new classifiers. A learning run would continue wittpeated such engagements
(perhaps ~500), each resulting in fitness assighraad operation of the GA,
leading to a revised set of classifiers for uséhinnext engagement. The starting
configuration for all engagements in a single ruasvalways one from the small
set of tactically interesting situations showrdigure 1.

Defensive (DEF) Offensive (OFF) High-Speed,
Head on Pass

t_ _} _4’__._ } * (HSHP) *

3000 f1.

3000 ft. 1500 ft.—p
325keas/20k1t 325k cas/20Kkft 325keas/20kft
Slow Speed, High Speed,

Line Abreast Line Abreast * =%-31
(SSLA) (HSLA) '

+ | 4 4+

<« 1500 ft.p <« 3000 ft.p 4_ T

21 5keas/20kft 325keas/20kft
Figure 1. The matrix of initial conditions for tkembat simulations.




The conditions in figure 1 were designed to getieera31 tactics results for a
balanced set of relevant situations.

The early experiments described in Smith & Dike98) were much as
just described, involving one-on-one combat, inchhihe LCS attempted to find
novel maneuvers for the X-31, but the opponent FeAaircraft used a fixed (al-
though suitably reactive and challenging) set ahdard maneuvers embedded in
AASPEM. In short, the opponent would always attetopgxecute the fastest pos-
sibl turn that would leave it pointing directly it&8 opponent, at the same time at-
tempting to match the opponent’s altitude.

As reported in considerably more detail in SmithDgke (1995), this
setup led to the discovery of a wide variety of reavd novel fighter maneuvers,
which were evaluated in positive terms by real teghest pilots. An example such
maneuver is shown in figure 2.

Figure 2. A example of a novel maneuver evolvedhgylearning classifier sys-
tem under the HSHP starting condition (see figyrd e aircraft on the left is
following a fixed, but reactive strategy; the aéfitron the right is following a
strategy evolved by the LCS, which in turn is a nesiation on the Herbst ma-
neuver.

The strategy discovered by the LCS in figure 2 imgs pitching upwards sharply,
stalling, tipping over, and then engaging the ommbrwith a favourable relative
position. This turns out to be a variation on tHerbst maneuver’ mentioned ear-



lier —in fact it was common for the LCS to redigepexising maneuvers, as well
as discover novel variations.

In later work (Smith et al, 2000), both opponentravcontrolled by a
separate LCS. As Smith et al (2002) describe, is1gbenario, reminiscent of the
continuous iterated prisoners’ dilemma (IPD), tesulting dynamic system has
four potential attractors, the most attractive diich is an ‘arms race’ dynamic, in
which each pilot continuously improves his stragsgiSmith et al (2000) explored
various setups and indeed found that an arms rfieet eeliably occurs under
some conditions.

Findings and Impact

Smith & Dike (1995) and Smith et al (2000) contaimd discuss several more ex-
amples of discovered maneuvers, including someatige expositions of arms
races that develop under the conditions of two L&Ssombat with each other.
One clear result of this (still ongoing) work ietheal impact it has had on its in-
dustrial collaborators. In general, the aerodynaroica new aircraft can be under-
stood before the first prototype is flown; but, tbemplexities of piloting and
combat, and consequently any real knowledge abmutpbtential combat per-
formance with skilled pilots, are much more difficto predict. Discovering suc-
cessful combat maneuvers in the way described lay mdvantages — in particu-
lar, without the cost of test pilot time or protpéyconstruction, LCS experiments
generate rich sources of information on combat ahges (or disadvantages) that
can be fed back to designers, pilots and custorides.system described briefly
here, and more fully in Smith et al (2000; 2002 &mith & Dike (1995), has re-
sulted in several novel strategies that have bggnosed by test fighter pilots,
and continue to provide useful results in a higtdynplex, real-world domain.

2.2 Developing an Expert Checkers Player

Our next example comes from the area of ‘computatiintelligence’. The term
“computational intelligence” has come to be asdedidargely with the major
fruits of nature-inspired computing, particularlyofutionary, neural and fuzzy
techniques. This is not be confused with the oldeore well-established term
“Artificial Intelligence”, which stands for the mbowider enterprise of, by what-
ever means, designing algorithms and systems #rédrm functions that can be
called “intelligent”. Artificial intelligence (Al)includes classic areas and tech-
nigues such as expert systems, heuristic treetsear@chine vision, natural lan-
guage processing, planning, and so forth, as vegetha growing range of nature-



inspired techniques. Al is concerned with everyghfrom full-scale intelligent
systems, through to the details of appropriate ikécs for edge detection in im-
ages from a narrow domain.

Basically, almost any activity, other than thosat thre “easy” for computers to
handle with standard techniques, can be labeleld thié adjective “intelligent”.
However, via natural computing, achievements hasenbmade that will seem
genuinely surprising to many people. It is no greatprise, for example, that
computers can design, more successfully than humeffisctive production
schedules for factories with thousands of jobsdasr. However it perhaps is sur-
prising that we can produce software that playskdies at the level of an expert,
without encoding any expert knowledge of the game.

Blondie24

During 1999, on an internet gaming site called “Tdwne”, an online checkers
player with the screen nanBondie24regularly played against a pool of 165 hu-
man opponents, and achieved a rating of 2048, rgaitiwell into the top half a
percent of checkers players using that site. BleRlilearned to play well at
checkers, as did all of the good human playersgusiat site (or otherwise). How-
ever, “she” was (and still is) a computer program.

In common with many successful artificial intefliice game playing pro-
grams, Blondie24 (Chellapilla & Fogel, 1999; 1992601; Fogel, 2002) incor-
porates a minimax algorithm (Russell & Norvig, 2D@&8 traverse the game tree
induced by the available moves from the currenttipss However, individual
nodes in the tree are evaluated by an artificiatalenetwork (ANN). The input to
this ANN is a specialised representation of theentrstate of the game, and the
output is a single value that is then used by thémax algorithm. So far so clear
— we can perhaps imagine that a well trained of-designed ANN could be ca-
pable of returning values in this context that vaowbnslate to competent check-
ers playing. But how can we design, or train, sanhANN? In Blondie’s case,
training was accomplished by using an evolutior@gorithm. A population of
such ANNs played against each other, accumulatiigtg over many games. The
result of a game between two such ANNs comes dawa single value (per
ANN) — either 1 (win), O (draw), or -2 (lose) — atitt overarching evolutionary
algorithm operates by regarding the fithess of &NAas its total score after a
number of games. In each ‘generation’ of this etiohary algorithm, the ANNs
with the lowest scores are eliminated, and new anegenerated by making mu-
tant copies of the better performers, and so itinoas.

For several reasons, Blondie24’s design and itsesscare both surprising and
significant. Its prowess at checkers does not eelyuition by human experts. In-
stead, it emerges from the evolutionary algorithracpss, guided only by the
bare, raw total of points earned after playing saivgames. If an individual had a
fitness of 6, for example, it was considered betied hence had more chance for



10

selection as a parent) than an individual withefi® 4. However this takes no ac-
count of the distribution of wins, losses and draWse individual with fitness 6
may have won 6 games and drawn 4, while the indaliavith fithess 4 may have
won 8 games and lost 2.

Guided only by this summary measure of performaacegvolutionary algo-
rithm was able to traverse the space of checkengmi-ANNs (or, more cor-
rectly, ANNSs for evaluating game positions in tlemtext of minimax search) and
emerge with expert-level players. It is worth cangrin more detail the approach
taken to generate Blondie24, which we do nextpfeihg the treatment provided
in Chellapilla & Fogel (2001).

Checkers: the game

Checkers, known in some countries as ‘draughtsiplires an eight-by-eight
board with squares of alternating colors, equiviatera chessboard. Each player
has 12 identical pieces, and the initial game fsit as detailed in Figure 3.

Figure 3. The initial position in a game of cheskéFhe White player moves up-
wards, and the Black player moves downwards.

When it is a player’s turn to move, the allowed e®ware: an individual piece can
move diagonally forward by one square; or an irdiigl may jump over an oppo-
nent's checker into an empty square. Such a “jumhly allowed if it takes two
diagonal steps in the same direction, the firshsstep is occupied by an oppo-
nent's piece, and the second step is currently yndyfter a jump, the opponent’s
piece is removed from play.

If one or more jump moves are available, then imandatory for the player to
make such a move. If an opponent manages to faadf iin the final row (from



11

their side’s viewpoint), it becomes a “king” piedeis then able to move either
forward or backward, but otherwise follow the samles. The object of the game
is to reach a position in which your opponent hagaossible moves — a common
way in which this happens is for the opponent'segeto all have been removed.

Representing the board and evaluating moves

Chellapilla and Fogel (2001) used a straightforwand sensible approach to en-
coding a board position. The current state of theg is simply represented by a
vector of 32 numbers, one for each board posifidTe humbers in a position are
either K, -1, 0, 1, orK, whereK represents a value assigned to a king. From the
viewpoint of a given player, a 1 orkaat a given board position represent, respec-
tively, either a standard piece or a king at thaition, while the negative values
are used to represent the opponent’s pieces, andrmficates an empty position.

In Chellapilla and Fogel's work{ was not preset. Rather than bias the process
towards giving a king any particular relative valoeer an ordinary piece, the
value ofK was itself subject to evolution.

When a move is to be made, Blondie24 operates alating, in turn, each of
its possible moves. Any such move leads to a fuboerd position, and this future
board position is evaluated by the ANN. The inputtie ANN is therefore this
32-dimensional vector. As is well known from ANNetlry, any reasonable ANN
architecture (in terms of the number of hidden tayend the numbers of nodes in
each layer) might suffice in being capable of themforming the appropriate
mapping from input vector to appropriate, usefuipoi. The difficulty, as ever, is
in choosing an appropriate training regime, thanpotes learning of suitable fea-
tures and components of the problem state thaisefil guides towards a proper
evaluation. After initial experiments with a moragghtforward neural network
architecture (which did not encapsulate the spatfatmation that human players
take for granted), Chellapilla and Fogel's desigtiedarchitecture of the ANN in
a way that highlighted potentially appropriate teat. This was done as follows.

Each 3x3 block on the board was represented twitsunit in the first hidden
layer. That is, given any specific 3x3 block, orfettee units in the first hidden
layer received incoming connections from that dpeset of 9 inputs from the in-
put layer (from the 9 parts of the vector corresiiog to the component positions
of that 3x3 block), and had no incoming connectifsiom any of the other units.
In this way, a specific signal emerging from thistufor later processing in sub-
sequent layers, summarises the state of play instiecific 3x3 block. The first
hidden layer contained such a unit for each of3&alifferent 3x3 blocks on the
board. In just the same way, each 4x4 block, 3&Bky 6x6 block, 7x7 block, and
8x8 block (of which there was of course just oneswepresented in the first hid-
den layer by its own unit. This resulted in a $e®d units which comprised the
first hidden layer.



12

91 feature units 40 units in 10 units in
in hidden layer 1 hidden layer 2 hidden layer 3

32 inputs
O O
= O O O .
O 0 0 O Single
O ’ 0 ’ 0 > O output
O 0 Full intercon- 0 Full O unit
| Connections nection inter 0O 0
wired accord- [ O connection
g ing to compo- [] O Full
nents of fea- Fu
[] turesin hidden . . 0 inter
layer 1 . connection
. . [J plus one extra
: ) ’ input: sum of
O O [ the 32 board
O 0 0 positions.

Figure 4. The architecture of the Blondie24 arigfimeural network,

The complete picture of the ANN’s architecture igeg in Figure 4. Between
the input layer, which simply carries 32 units, qeg board position, and the first
hidden layer, the connections are arranged acaprigirthe specific feature en-
coded by each of the units in hidden layer 1. Betwihe pairs of layers, the con-
nections are all complete — e.g. each unit in ddger 1 has a feedforward con-
nection to each unit in hidden layer 2, and simfiderhidden layers 2 and 3, while
every unit in hidden layer 3 is connected to tmylsi output unit. The output unit
receives an additional input, which is the sunmhef 32 board positions.

In total, including bias weights, there are 504@r@rctions in this network,
each of which is a real-valued weight subject ®ekiolution process. In addition,
every hidden layer unit has a bias input, which mse@n additional weight to be
evolved. Each unit in the hidden layers operatethénstandard way, common in
most ANN applications, by calculating the weightedn of its inputs and apply-
ing the hyperbolic tanget function, resulting in@nput signal strictly between -1
and 1. From the perspective of the ANN ‘playenistultimate scalar value is di-
rectly used as an estimate of the value of thisdepasition. The closer to 1, the
better for the ANN. However, where the board positivas actually a win for the
ANN, the value was taken to be precisely 1, aritiwas a win for the opponent
the value was taken to be -1.



13

Evolving Checkers Players

The process begins with a population of 15 such 8N~Nhich are initialized ran-
domly. Every connection weight and bias value iegia value chosen uniformly
at random from the interval [-0.2, 0.2], and withset initially at 2.0. In common
with the practice of evolutionary programming andlation strategies, each indi-
vidual in the population also contained a vectostep size parameters. For every
connection weight, and every corresponding bias, tilere was also a step-size
parameter governing the range of mutations thatidvbe applied to that parame-
ter. That is, when a weight or bias parameter watatad, this was done by add-
ing a Gaussian perturbation whose mean was 0 andemariance was provided
by the associated step size parameter in the clsmm® The step-sizes were ini-
tially all set at 0.05, and then subject to evatalong with the other parameters.

Whenever an ANN was selected as a parent, itsraffsgvas generated as fol-
lows: first, each of the step size parameters wastad, by multiplying it with a
random number from a specific exponential distidut and every weight and
bias parameter was mutated by adding a Gaussidorlpgtion whose step size
was the associated step size parameter, as indlidételly, recall that each indi-
vidual also carries its own value figr which is also subject to evolution. This was
mutated by adding a perturbation chosen uniformiisaadom from the set {-0.1,
0, 0.1}, but was protected from moving below 1 bowee 3.

During the evolution process, Each ANN played oaeng each against five
opponents, selected uniformly from the populatidiith the scoring for individual
games as indicated, the ANN would therefore accatauh score over these five
games ranging from —10,(all losses) to 5 (all wis)game was declared as a
draw (zero points) if it lasted for 100 moves. Edisdly, in each generation each
ANN took part in around 10 games, and the top b3€ims of points received)
became parents for the next generation. Each thai¥igame was played using a
minimax alpha-beta search set to 4-ply (with exéshgdly in a number of special
cases). After 840 generations in which evolving ANdayed against each other,
the best resulting ANN was then harvested and iteckdo play against human
opponents on the internet gaming site “The Zone”tHe next subsection, we
summarise the surprising and remarkable resultérfppmance of this ANN.

Humans vs Evolved ANNs

Over a two-month period, the evolved ANN, eventualamed “Blondie24”
(which was successful in attracting opponents)ygial65 games against human
opponents at “The Zone”, although opponents wetean@re they were playing
against a computer program. In these games, the Adéd an 8-ply search, and



14

faced a variety of opponents. The ANN’s performaptaced it at better than
99.6% of all the (rated) players using the site.dda occasion, the ANN beat an
expert-level player (with a rating of 2173, justidwe the master level of 2200)
who was ranked 9Bof over 80,000 registered players.

Chellapilla & Fogel (2001) performed some compredinee control ex-
periments, which showed that the evolved ANN opmetatith a clear advantage
over a system that simply used the piece diffeaérats the basis for choosing
moves in an 8-play approach. In particular, theypared the ANN with a piece-
differential based player, on the basis of usingaé@PU time in their lookahead
search at each move; this disadvantages the ANide st has over 5,000 weight
parameters involved in its heuristic calculatiamfise piece-differential player can
look further ahead in the time available. Theseeeixpents showed conclusively
that the evolved ANN was a significantly betteryglain both equal-ply and equal
CPU-time conditions.

The achievement of Blondie24 is remarkable frormynaewpoints: par-
ticularly the essential simplicity of its approathe fact that the search landscape
for the evolutionary algorithm was so huge, andfdet that fithess assessment
was a relatively coarse measure of a network’soperdince. A straightforward as-
sessment of Blondie24’s ‘message’ to us is thakémplifies the flexibility and
potential of evolutionary search, even when thisesruited to search a coarse-
grained 10,000-dimensional landscape (the evoludicategy that was employed
optimised both a weight and a step-size parametezdch connection). Achieving
expert level performance (over 2,000 points) issaderably superior to most hu-
mans. Perhaps not surprisingly, this is also adstasuperior to a simpler (but
seminal) approach in this area by Samuel (1959 wdttempted to derive, by an
iterative learning process, a polynomial boardngatfunction. Chellapilla and
Fogel (2001) note that this was considered tolvatew 1600 in the opinion of the
American Checkers Federation Games Editor.

The world champion checkers program, Chinook (Sitkaet al, 1996),
is rated at over 2800, over 100 points above itsedt human competitors
(Schaeffer, 1996). In fact it is now known that @wok can never be defeated in
‘go-as-you-please’ checkers, in which there areresirictions on the initial
moves. The chief difference between Blondie24 ahéh@k is the amount of
built-in specialised knowledge. In Chinook, thedewof such knowledge is very
substantial indeed; in Blondie24 it is virtuallymeo Along with many other ele-
ments informed by careful expert knowledge andrigniChinook incorporates a
database of games from previous grand mastera aothplete endgame database
for all cases that start from ten pieces or fewer. Blwliand Chinook represent
entirely different artifical intelligence approachto designining a game-playing
program. It is not difficult to argue that the apach taken by Blondie24 is the
more interesting and impactful — from no prior kiesdge, other than a built-in
awareness of the rules of the game, an expert pagér emerged from the evolu-
tionary process, providing a very tough, usuallgwmountable challenge to all
but a very small percentage of human players.

Finally, since the checkers research, Chellapill&del's approach was
extended to address chess, by combining the ca#éwmohry spatial neural net-



15

work approach with domain-specific knowledge (Fogtedl, 2004; 2006). The re-
sult was an evolved chess player that earned wies Fritz 8, which was the"s
best computer program in the world at that time.

2.3 Discovering Financial Trading Rules

Financial markets are complex and ever-changingr@mwents in which groups
of individuals, companies and other investors dreags competing for profit.
There are many opportunities in this area for maehéarning and optimization
methods, and consequently a variety of natural edatipn approaches, to be ex-
ploited, and a chapter in this volume is indeedotiy to this topic. In this section,
we focus on one specific thread of research in @héa — which has a simply
grasped approach and a straightforward task teesdlkis is the use of genetic
programming to discover new and valuable ruledifancial trading.

It is now common to see applications of evolutigneomputation applied to
the financial markets (Brabazon & O’Neil, 2005;stviolume). Genetic Program-
ming (GP) (Koza, 1992; Angeline, 1996; Banzhaf kt1898) is particularly
prominent in terms of the degree to which it hantly been applied in finance
(Chen & Yeh, 1996; Fyfe et al, 1999; Allen & Kagalen, 1999; Marney et al,
2001; Chen, 2002; Cheng & Khai, 2002; Farnsworttalet2004; Potvin et al,
2004). In this section we focus on the specifi@adrefinance known atechnical
analysis(Pring, 1980; Ruggiero, 1997; Murphy, 1999; Lo kt2800). Technical
analysis is a set of techniques that forecastuhed direction of stock prices via
the study of historical data. Many different methaghd tools are used, all of
which rely on the principle that price patterns amghds exist in markets, and that
these can be identified and exploited.

Common tools in technical analysis include indicatsuch as moving aver-
ages (the mean value of the price for a given stwckdex over a given recent
time period), relative strength indicators (a fumetof the ratio of recent upward
movements to recent downward movements). There baea a number of at-
tempts to use GP in technical analysis for leart@ahnical trading rules, and a
typical strategy is for such a GP-produced ruldéoa combination of technical
indicator ‘primitives’ with other mathematical opéions. Such a rule is often
called a ‘signal’. E.g. GP may be employed to fbwth a good buy signal and a
good sell signal — that is, one rule which, ifatgput is above 0, indicates that it is
a good time to buy, and a different rule indicativiten it is a good time to sell.

Early attempts to use GP in technical trading ymiswere by Chen and Yeh
(1996) and Allen and Karjalainen (1999). Howevdthaugh GP could produce
profitable rules for the stock exchange marketsjrtperformance did not show
any benefit when compared to the standard buy-afdi-approach. ‘Buy-and-
hold’ simply means, for a given period, buying steck at the beginning of the



16

period, and selling at the end — hence, alwaysod gtea in a market that gener-
ally moves up during the period.

More recent applications of GP in this context haeen more encouraging
(Marney et al, 2000; 2001; Neely, 2001). We wilbkoin particular at Becker &
Seshadri’'s work (2003a; 2003b; 2003c) which fourkRt&yolved technical trading
rules that outperformed buy-and-hold (at leastiifidgénds are excluded from
stock returns). In turm, their approach was founidefillen & Karjeleinen (1999),
with various modifications. After giving some détaf the overall approach, we
summarise from further experiments from LohpetchCé&rne (2009; 2010) that
probed certain boundaries of the technique and ivhits robustness.

Becker & Seshadri’'s approach to evolving trading rles

Becker & Seshadri (2003a; 2003b; 2003c), based len A& Karjeleinen (1999)
used a fairly standard GP approach and found th&ssignificantly outperformed
buy-and-hold on average over a 12-year test pafidqchding with the Standard &
Poors (S&P500) index. Their GP’s function set coreid the standard arithmetic,
Boolean and relational operators, and the ternsatincluded some basic techni-
cal indicators. An example of a specific rule foumdtheir method is in Figure 5.

(MA2) (ma-10) (t ) (Mx-2)

Figure 5. Example of a trading rule found by Be&®eshadri’s GP approach.

The rule in figure 5 has the following basic intetation “the 3-month mov-
ing average (MA-3) is less than the lower trene I{t) and the 2-month moving
average (MA-2) is less than the 10-month movingaye (MA-10) and the lower
trend line (t) is greater than the second prev®usonth moving average maxima
(MX-2)". This signals trading behaviour in the followingyw If the trader is cur-
rently out of the market (no stocks invested in $8&”500), and the rule evaluates
to true, thenbuy; if the trader is currently in the market, and tide becomes



17

false then sell.. This procedure assumes a fixed amtuimvest (e.g. $1,000)
whenever there is a buy signal.

In the remainder of this subsection we explain dpproach in more detalil,
and try to emphasise the key points that are nacess replicate similar perform-
ance. In passing we note the main ways in whictk8e& Seshadri modified the
original approach of Allen & Karjeleinen. These wemonthly trading decisions
rather than daily trading; a reduced function sethe GP approach; a larger ter-
minal set in the GP approach (with more techniodldators); the use of a com-
plexity-penalising element to avoid over-fittingnda finally, modifying fitness
function to consider the number of periods with lvpelrforming returns, rather
than just the total return over the test periodcdmbination, these methods en-
abled Becker & Seshadri to find rules that outpenfed buy and hold for the pe-
riod they tested, when trading on the S&P500 indels an open question as to
which modifications were most important to this i@ekement, however Lohpetch
& Corne (2010) begins to answer that question, eswill see, by showing (as is
intuitiely the case) that it is increasingly easfind good rules as we change the
trading interval from daily to weekly, and themtanthly.

In the following, we exclusively use S&P500 dats @d Allen & Kar-
jeleinen (1999) and Becker & Seshadri (2003a; bso) our ‘portfolio’ is  the
fixed set of 500 stocks in the S&P500 index, whiaggregate to provide daily
price indicators.

Function and Terminal Sets used by Becker & Seshatr

In Becker & Seshadri's GP approach, the functianceenprises simply the Boo-
lean operators and, or and not, and the relatiopatators > and <. The terminal
set comprises the following, in which ‘period’ walkvaysmonthin Becker & Se-
shadri’'s work, but later we discuss Lohpetch & @of2010) in which it could be
day, week or month in different experiments.

opening, closing, high and low prices for the corgeriod;

2,3,5 and 10-period moving averages;

Rate of change indicator: 3-period and 12-period;

Price Resistance indicators: the two previous 3sgemoving average
minima, and the two previous 3-period moving averagxima;

e Trend Line Indicators: a lower resistance line Hase the slope of the
two previous minima; an upper resistance line basethe slope of the
two previous maxima.

The n-period moving average at periotis the mean of the closing prices of the
previous months (includesh). The n-period rate of change indicator measured at
periodm is: (c(m) —c(m—(n—1))x100)t(m-(n-1)), wherec(x) indicates the closing
price for periodx. Previous maxima MX1 and MX2 are obtained by cteishg

the 3-period moving averages at each point in teeipus 12 periods. Of the two
highest values, that closest in time to the curpemiod is MX1, and the other is



18

MX2. the two previous minima are similarly definddnally, to identify trend line
indicators, the two previous maxima are used tinded line in the obvious way,
and the extrapolation of that line from the currpetiod becomes the upper trend
line indicator; the lower trend line indicator isfohed similarly, using the two pre-
vious minima.

Becker & Seshadri’'s Fitness Function

The fitness function has three main elements. Hrite so-called ‘excess return’,
indicating how much would have been earned by usiegrading rule, in excess
of the return that would have been obtained frofoug-and-hold strategy. The
other elements of the fitness function were intoeliby Becker and Seshadri to
avoid overfitting. These were: a factor that prosabofitness for trading rules that
were less complex (e.g., with reference to figure Bess complex rule is one in
which the tree has smaller depth); and, a factat ¢bnsidered ‘performance con-
sistency’ (PC), favouring rules that generally wased often, each time providing
a good return, rather than rules that were veryfate in only brief periods.

In more detail, the excess return is simdly=r —r,, , wherer is the return on

an investment of $1,000, amg}, is the corresponding return that would have been
achieved using a buy and hold strategy. To caleujadllen & Karjeleinen (1999)
and Becker & Seshadri (2003a; b; c) used:

= 3,0+ X 01,0+

in which: I, =logPR, —logPR_, , indicating the continuously compounded re-
turn, whereP, is the price at timé. The termly(t) is the buy signal, either 1 (the
rule indicateduy at timet) or 0. The sell signalg(t), is analogously defined. So,
first component gives the return on investment ftomtimes when the investor is
in the market, and the second compong(t), indicates the risk-free return which
would otherwise be available, which is taken foy garticular dayt from pub-
lished US Treasury bill data (these data are adaila from
http://research.stlouisfed.org/fred/data/iratesftb The second component there-
fore represents time out of the market, in whicks iassumed that the investor's
funds are earning a standard risk-free interesallyi the third component is a cor-
rection for transaction costs, estimating the cammged loss from the expenditure
on transactions; a single transaction is assumedsin0.25% of the traded volum —
e.g. $2.50 for a transaction of volume $1,000. tmmber of transactions actioned
during the period by the rule iis

The second main part of the fitness functigp,is calculated as:

1-c
iy = I+ ING—
bh Z t (1 +C)
in whichr, is as indicated above. This calculates the retwer the period from
risk-free investment in US Treasury bills, involgia single buy transaction.



19

Becker & Seshadri’'s complexity-penalising adjustmevorks as follows:
Given a rule that has deptlepthand fitness value (excess retufnjhe adjusted
fitness becomesffnax(5depth. This involves the constant 5 as a relativelyi-arb
trary desired maimal depth, and in the trading evelution context, there has been
little paramertic investiagtion around this valuefar. The other of Becker & Se-
shadri’'s modification to the excess return fitnéssction, Performance Consis-
tency(PC) works as follows. The excess retlris calculated for each successive
group ofK windows of a certain length covering the entir feeriod.

The value returned is simply the number of thesgoge for whichE was
greater than both the corresponding buy and haldmréfrom investing in the in-
dex over that period) and the risk-free returnmiyithat period. For example, if the
rule is evaluated over a 5 year test period, thev@®Gion of the fitness function
might use 12-month windows. Clearly there are Sueh windows in the test pe-
riod, and the fithess value returned will simplyaseinteger between 0 (the rule did
not outperform buy and gold and risk-free investimerany of the five windows)
and 5 (the rule was more successful than both bdykald and risk-free return in
all of the windows).

At last, the above background enables us to dtatéithess function used (with
minor variations in each case) in Becker & Sesh@fi03a; b; c) and Lohpetch &
Corne (2009; 2010). The fitness of a GP tree othddpn these studies was the
performance-consistency based fitness (i.e. a nufrira 0 toX, where there were
X windows covering the test data period), adjustepenalise undue complexity in
by 5/max(5d), in whichf is the number of th¥ windows in which both the corre-
sponding buy and hold return and the risk-freerretuere outperformed by the
rule.

Some illustrative results

We report here some results that show how thiscagpr performs on various win-
dows of time when trading with the S&P500 indexeThsults we show are some
of those from Lohpetch & Corne (2010), and the sub§those that were obtained
under the same test conditions as used by Beckeeshadri (i.e. monthly trading
for a specific training and test window) are guitdicative of Becker & Seshadri's
own results. However, it is worth first discussiegme fruther details of the way
that the genetic programming method was set uthtoexperiments.

Although perhaps not always the case, it seemsthieaprecise choice of
mutation and crossover methods makes little ré¢édrdince in this application; the
chance of evolving effective trading rules seereauty related to a good choice of
function and terminal sets for the expression trasswvell as a wise choice of fit-
ness function. Although, as we will see later, filegluency of trading is a signifi-
cant factor. Meanwhile, Lohpetch & Corne (2009; @0Oised standard mutation
operators, as described by Angeline (1996), nagaw, switch shrink andcycle
mutation, and used standard subtree-swap cros@i$éora, 1992). Finally, we note
that, in the experiments whose results we summassé the population was ini-
tialized by growing trees to a maximum depth ofhbBwever no constraint was
placed on tree size beyond the initial generatither than the pressure towards
less complex trees which is a part of the fitrfasstion.



20

We can now show some results that indicate theopednce achievable
by such a GP system as described in the last settidhe experiments summa-
rised here, from Lohpetch & Corne (2009; 2010),0pyation size of 500 was
used, and other relatively standard GP settings, aviun continued for 50 genera-
tions. Here we show results for each of daily, iie@kid monthly trading, and we
find that outperfomance of buy-and-hold can indeedachieved even for daily
trading, but as we move from monthly to daily treglthe performance of evolved
rules becomes increasingly dependent on prevaitiagket conditions. The data
used is the S&P500 index from 1960 onwards. In Be&kSeshadri’'s demonstra-
tion of outperforming buy-and-hold, only monthlading was used, and their re-
sults arise from training the rules over the1960941%nd evaluating them on a
test period spanning 1992—2003. This corresponddamthlySplit1” in the fol-
lowing, however it is clear from Lohpetch & Corrg009) that more robust per-
formance is obtained when a validation period isdus'he following illustrative
results therefore reflect a training/validationfte=gime in which the GP training
run evaluated fitness on the training period ohlyt, the rule that achieved the best
performance on a validation period was harvested,this was the rule evaluated
on the test period.

Results for four different monthly trading dataitsphre summarized below.
The splits themselves are as follows, in whithives the length of the validation
period in years, immediately following the trainipgriod, anK gives the length
of the test period in years, again immediatelyofelhg the validation period.

MonthlySplitl: 31 yrs trainingN=12,K=5
MonthlySplit2: 31 yrs trainingN=8, K=8
MonthlySplit3: 31 yrs trainingN=9, K=9
MonthlySplit4: 25 yrs trainingN=12,K=12

Corresponding splits for the weekly and daily trediexperiments are also su-
marised here very briefly (for details see Lohpe&&cBorne (2010)). Four different

weekly trading and daily trading data splits welso anvestigated, roughly corre-
sponding to the monthly data splits in terms of nlnenber of data points in each
split. E.g. WeeklySplitl involved 366 weks tradirigh8 weeks validation and 157
weeks testing. Similarly, the training periods tbe daily splits were approxi-

mately one year in length. The four different wgedhd daily splits started at dif-
ferent times spread evenly between 1960 and 1996.

Figure 6 shows the four Monthly data splits aligeghinst the S&P 500
index for the period 1960—2008. Note that the raarkovements were net posi-
tive in each part of each split, indicating thatpauforming buy-and-hold was in all
cases a challenge.



21

1965 1970 1975 198 1990 1995 2000 2005

Figure 6. The S&P500 index over the period 1960—820ustrating the four data splits
for the case of monthly trading.

In Lohpetch & Corne’s experiments (2010), they asgplored different lengths
of window for the Performance Consistency elemdnthe fithess function. In
Becker and Seshadri’'s work, the Performance Camgigtapproach clearly results
in improved performance, however they only repodedhe use of 12-month win-
dows. Lohpetch & Corne experimented with differéatgths for these windows
for each trading situation, namely: 6, 12, 18 addn®nths periods for monthly
trading; 12 and 24 weeks for weekly trading, ancdi@ 24 days for daily trading.

For each trading period (monthly, weekly, dailyphpetch & Corne did 10
runs for each combination of data split and coesisf of performance period. The
outcome of the 10 runs is summarised in Tables 1si8ply as the number of
times that the result outperformed buy-and-hold.

Table 1. Summary of results for monthly trading

Data split PC Trials PC Trials outperforming
Period outperforming | Period buy-and-hold.
buy-and-hold.
Monthly Splitl 6 10 out of 10 12 10 out of 10
Monthly Split2 6 9 out of 10 12 10 out of 10
Monthly Split3 6 10 out of 10 12 9 out of 10
Monthly Split4 6 10 out of 10 12 10 out of 10
Monthly Splitl 18 10 out of 10 24 10 out of 10
Monthly Split2 18 8 out of 10 24 10 out of 10
Monthly Split3 18 8 out of 10 24 7 out of 10
Monthly Split4 18 10 out of 10 24 10 out of 10




22

As Table 1 shows, monthly splits 1 and 4 were Yeaell-disposed to good
performance, but performance was also rather rafiughe other monthly splits.
Note that outperforming buy and hold would seerbdanore likely, according to a
priori intuition, when the performance of buy-andkhin the test period is rela-
tively weak, but this is not the case for Monthplits 1 and 4 (see Figure 6). The
results are quite impressive from many points efwiln many cases, ten tests out
of ten showed that a simple trading rule evolvedjeyetic programming was able
to outperform buy-and-hold in an upwardly movingrked.

Table 2. Summary results for weekly trading

Data split | PC Trials PC Trials outperforming
Period | outperforming Period | buy-and-hold.
buy-and-hold.
Weekly 2 out of 10 7 out of 10
Split 12 24
Weekly 10 out of 10 5 out of 10
Split2 12 24
Weekly 12 4 out of 10 2 4 out of 10
Split3
10 out of 10
Weekly 12 24 10 out of 10
Split4

Table 2 shows the results, summarized in the saay far the case of weekly
trading, and Table 3 presents the correspondingtsefer the case of daily trading.
These clearly show increasingly less robust reslaltertainly seems that this rela-
tively straightforward GP method can find robudesufor weekly trading that out-
perform buy-and-hold in some circumstances (splasid 4), with less reliable per-
formance in other cases. However, Lohpetch & C¢2889; 2010) were not able
to discern any pattern that explains this from gses of the data splits. Finallly, for
daily trading, Table 3 shows that outperforming daungl-hold is less likely, with
strong performance in only one of the four datdspand very poor performance
in two of the data splits.

Table 3. Summary of results for daily trading

Data split | PC Trials PC Trials outperforming
Period | outperforming Period | buy-and-hold.
buy-and-hold.
Daily 0 out of 10 0 out of 10
Splitl 12 24
Daily 0 out of 10 0 out of 10
Spli2 12 24
Daily 10 out of 10 9 out of 10
Split3 12 24
Daily 2outof 10 4 out of 10
Splita 12 24




23

A Brief Discussion

The investigation of genetic programming in finah@pplications, and in particu-
lar the use of it to discover technical tradingegjlremains an active thread of re-
search in both industry and academia. In the puldisacademic research, it was
commonly found in earlier studies that rules founydgenetic programming were
profitable, but usually not competitive with straifprward “buy and hold” strate-
gies. However, as we have seen, the situationasgihg and it now seems that
progress is being made in finding ways to use gepebgramming to produce ef-
fective and interesting rules that might be useéhdividual traders. There are sev-
eral caveats, and of course this enterprise is @méythread of work in a wide area
that also involves natural language understandiggraany other areas of machine
learning (for example, to spot ideal trading oppoities based on the latest online
news). However this work represents another exawiplee way in which natural
computation can help us generate strategies fopleonsituations which are com-
petetive with those we design ourselves.

We should also note that the approach describéuisrsection is far from the
last word in the application of genetic programmioghe specific area of technical
trading. We have taken pains to describe a claggicoach, and shown that it can
indeed find robustly profitable trading rules underange of conditions — however
several more sophisticated ways to use GP in ti@a also exist. For example,
rather than simply evolve a single rule that enakgpes both a buy and sell signal,
different rules can be evolved separately for bgynd selling. Also, we note that
interested researchers may pick up code for ewpltéchnical trading rules (writ-
ten by Dome Lohpetch) from the following site:

http://www.macs.hw.ac.uk/~dwcorne/gptrcode/.

It is also worth mentioning alternative directiombich attempt to gain on
buy-and-hold by including risk metrics in the rul@s in their evaluation). Typi-
cally, a risk measure such as the Sharpe ratior(8hd996) is used to normalize
the estimate of financial return, effectively doweudjng the performance of rules
that promote trading in volatile conditions, proigtrules more likely to be ap-
plied by investors. For example, in attempting tdld on work by Fyfe et al
(1999), Marney et al (2000; 2001) included the efsmetrics for calculating risk,
although still did not outperform buy-and-hold. Morecently, Marney et al
(2005) used the Sharpe ratio and found that a ieshtnading rule that easily out-
performed simple buy and hold in terms of unadpist#urns, but not in terms of
risk-adjusted returns. There is clearly much wdilk ® do until techniques exist
in the research literature that can robustly odigper buy-and-hold in a way that
satisfies risk-conscious traders, although the nessgand effort in this direction
makes it clear that this will be achieved, as wvasllsuggesting that private and un-
published research in commercial organizationsaha®st certainly achieved this
already with appropriate use of genetic programraimgj similar technologies.



24

3. Examples of Natural Computing’s ‘Outreach’ elsewhee in
Science and Engineering

In this section we select two areas of natural agatpon which have wider impli-
cation for significant areas of science and teobgyl Mostly, an application of a
natural computing technique may produce excellestlts in its domain, and the
impact of those results, though potentially sigmfit, tend to remain solidly
within that domain. Progress in general financiatimematics, for example, will
not be revolutionised by the trading application aéigcussed in section 2. How-
ever, sometimes an exemplar application will opgnpreviously unconsidered
possibilities in a whole subfield of science. Iisteection we discuss two exam-
ples in which we can see such broader consequefitesfirst is the use of
(mostly) multi-objective evolutionary computatiom the area o€losed-loopop-
timisation, in order to optimise a range of proessand products in the biosci-
ences, process industries and other areas. Iratéig, evolutionary computing
was never an “obvious’ technique to try, givengbgential cost in time, however
it's use has time and again proven worthy, andithisirn leads directly to better
and faster processes and products emerging franextomple, the use of the in-
struments that have been configured via evolutiptechniques. The second exe-
ple area we look at in this section is the cona#phnovization which exploits
multi-objective evolutionary computation in a wédnat leads to generic design in-
sights for mechanical engineering (and other) gnoisl. In multi-objective prob-
lems (see Deb, 2001; Corne et al, 2003) the re$sllving the problem is a (usu-
ally) large collection of diverse solutions, eaghimal in a sense, but traversing a
Pareto surface of optimal from (for example) highdyiable and high cost solu-
tions to exceptionally cheap but less reliable ofiég notion of innovization is to
exploit the prowess of evolutionary computing irtagbing such a diverse set, by
further analysing this collection of designs todfims it turns out, previously un-
known generic design rules which seem to be trualldbptimal’ designs, wher-
ever they sit on this Pareto surface. A well desthnatural computing approach
to a specific problem in mechanical engineering, ggample, thereby leads to
new design principles that can have much wider ohpizan simply solving the
given problem.

3.1 Applications in Analytical Science: Closed-Loop
Evolutionary Multiobjective Optimization

Knowles (2009) provides a detailed and comprehensiimmary of historical ori-
gins and current work in the broad area of closegloptimisation using evolu-
tionary multiobjective algorithms. We provide a 8an but more brief treatment



25

here, including a summary of two of the severatresting modern case studies
covered in Knowles (2009).

As Knowles (2009) points out, the idea of usingeaolution-inspired
technique for producing solutions to optimizatiaolgems has been explored for
around 60 years so far, starting in the 1950s. dédlebrated British statistician
George E.P. Box used the term ‘closed-loop’ in dbsy the kind of evolution
experiments that were first investigated, whiledrigechenbrg (a pioneer in evo-
lutionary computation) used the phrase ‘evolutigrexperimentation’. In closed-
loop evolution-inspired optimisation, the evolutipnocess is a combination of
computation and physical experiment. The evaluatibcandidate design solu-
tions is done in the real world by conducting pbgbiexperiments. Much of the
pioneering work in evolutionary computation (by Renberg and his team) was
of this kind. In much more recent times, the clekexp approach has been used,
commonly with much success, in evolvable hardwasearch (see chapter in this
volume), in evolutionary robotics research, as vesllin microbiology and bio-
chemistry. In this section, some brief example cadies are described, to illus-
trate the increasingly wide emerging impact of ttéshnique at the evolu-
tion/engineering interface.

With a focus on closed-loop evolutionary multioltjee optimization
(CL-EMO) in particular, we look at two cases (isfrument optimization in ana-
lytical biochemistry; (i) on-chip synthetic bionealule design; these are described
in greater detail in Knowles (2009) as well asHartreferences detailed later, and
along with other quite different examples. Howeueefore these case notes, we
will briefly look at the historical development arfdndamental concepts in
closed-loop optimization and CL-EMO.

Historic Highlights in Closed-Loop Optimization

In Berlin in the 1960s, Rechenberg, Schwefel, areh&t conducted a series of
studies in engineering and fluid dynamics, in whiody tested the idea of using a
process inspired by evolution to search for new auccessful designs. Their
work clearly demonstrated that complex design esgging problems (including:
the optimal shape of a fluid-bearing pipe, anddhksign of a supersonic jet noz-
zle) could be addressed in this way with rampantess (see Chapter 8 of Fogel
(1998), as well as Rechenberg (1964; 2000). Thiglgsocess itself was found
to be efficient and scalable, and the results vineghly effective. Rechenberg and
his team were using an early example of an evalatip algorithm, but in which
only the selection and variation steps were dona icroprocessor; the rest, the
evaluation of candidate designs, was done by aactgtg prototype designs and
performing experiments to test their propertiesnolvative solutions were found
to all of the engineering design problems that tstegied.

Pre-dating Rechenberg’'s work, a similar principlaswused by George Box,
who introduced ‘evolutionary operation’ (EVOP) i®5F. This was also an ex-



26

perimental method of optimization, which Box (19®nvisaged being used regu-
larly in factories and similar processing facilgieBox’s ‘closed-loop’ scheme in-
volved some human input, and was somewhat morendigistic than the ap-
proach taken in Berlin, but, just as Rechenbergiskywvas inspired by principles
from natural evolution. Box’s methods were bothcassful and very influential
(Hunter & Kittrell, 1966), remaining in use todayleanwhile, the work of Re-
chenberg’s team was the beginning of the fieldwafl@ion strategies, one of the
foundation stones of the current field of evoluioncomputation.

Since these early studies, however, evolutionammgdation as a whole has
largely been concerned with entiréty silico optimisation. The great majority of
growth in this research area, as well as in inéalgtractice, concerns applications
that involve convenient and entirely computatioastimations of the fithess of
computational abstractions of solutiofigis is fine for a vast collection of scenar-
ios, but there remains a need — in fact a quickjyaeding one — for applications
in which it makes sense for designs to be realised evaluated physically
throughout the simulated evolution process.

Research in evolvable hardware shows that, if tliduéion processs is given
direct access to a complex physical structure gdescan be evolved that use en-
tirely different proinciples than would be usedtyman designers, often exploit-
ing aspects of the physics of the structures irelthat are unfamiliar to human
experts, or simply too difficult to use as parttloé design process. Thompson &
Layzell's work with Field Programmable Gate Arraigs exemplary of this.
Meanwhile, evolutionary robotics projects have oftelied upon the controllers
being evolved in real time within physical robotgile they are performing real
tasks in a real environment (Nolfi & Floreano, 200#rianni et al, 2006). The
benefits of such evolution experiments, exposeahth exploiting the true physics
of the designs being evolved, are not just confiteeévolutionary robotics, e.g.
Davies et al (2000), Evans et al (2001).

Later, we describe three further and recent usetoséd-loop evolutionary op-
timization, from recent work in which the third kot (JDK) has been involved.
Each is a scenario where direct experimental etialuaf solutions is either the
only option or is clearly preferable to simulatigdso they each involve multiob-
jective evolution, a notable advance of the lagnty years (Fonseca & Fleming,
1995; Coello, 2000; 2006; Deb, 2001; Corne et @3 which was not available
to Box or Rechenberg. One of the several benefissroulti-objective approach in
these scenarios is that the different design dbgstmay simply be stated, with-
out any need to define normalizations, weightsr@riies that mangle them into
a single scalar (and usually misleading) measurpiafity.

At this point, it is worth noting that there is wigpread use of certain statistical
methods in industry, for the types of problems thvat are considering in the
‘closed loop’ setting. The techniques employed r&ferred to as design of ex-
periments (DoE) approaches, or sometimes experaheesign (ED) based ap-
proaches (Fisher, 1971; Chernoff, 1972; Myers & Momery, 1995; Box et al,
2005). Such methods emphasise rational reasonamg &l the information ob-
tained so far, as opposed to more randomized eatpor Standard DoE is typi-



27

cally used for probing low-dimensional parametesicgs using few experiments,
while evolutionary algorithms are typically usedr foptimization in high-
dimensional spaces, using many evaluations, anchizet many different types of
structure, including permutations, graphs, netwosaksl so on. However, there is
an increasingly disappearing divide between thetipes of approach, especially
since the advent of sequential DoE, which incompatspects of evolutionary
computing. The closed-loop optimization scenadossidered in this section lie
between these niches, and benefit from aspectstbfdpproaches.

Fundamentals of Closed-Loop Evolutionary Multiobjedive Optimiza-
tion

In closed-loop EMO, candidate solutions to a probkre generated by an algo-
rithm in computer simulation, but their evaluatisrachieved by physical experi-
ment. Evaluations are fed back to the algorithm isdeneration of subsequent
solutions is a function of these. Thus the protessthe form of a closed loop, be-
ing at least partially sequential. Closed-loop jpeois can be defined generally as
multiobjective optimization problems in which, essgally, we need to find some
ideal solution vectok, which simultaneously minimizes each of a collectof k
objective functiond(x), fi(x), ... f(x). Typically, a single physical experiment
g(x) yields thek measurements(x), fi(x), ... fk(x). That is, thek objectives aré
different measurements that are made as the refaltsingle experiment, all of
which we need to optimize in some way. Typicallylemst some of the objectives
will be in conflict (Brockhoff & Zitzler, 2006), ahno single solution is a mini-
mizer of all functions. Rather, the improvementook objective is only possible
by sacrificing, or trading off, quality in some ethobjective. The solutions corre-
sponding to optimal values of theobjectives are known as the Pareto set, and
when plotted in objective space, form the Paretotf(see Figure 7).



28

® Solutions on the
Pareto front

A Unsupported solutions
® (in a concave region)

) ® ® Dominated solutions

Objective 2

® ® (not on the Front)
@

Objective 1 >

Figure 7: An illustration of a Pareto front for a typicgbtamization problem with two ob-
jectives,both of which have to be minimized. Eatthe solutions on the Pareto Front (PF)
are optimal in the Pareto tradeoff sense. E.gafgr solution on the PF, no silution exists
which is improved in one objective without beinggteded on another objective. Often,
some solutions on PFs are ‘unsupported’ — theseali@ optimal solutions in the Pareto
tradeoff sense, but for any linear combinationhaf objectives that might be used in a sin-
gle-objective simplification of the problem, theywd not be optimal.

Since solving such a vector optimization problesually leads to a set of solu-
tions, rather than a single one, there is, in npoattical applications, a need for
decision making to select one solution from this $his aspect of multi-objective
optimization is important and well-studied (Fonsé&c&leming, 1998; Miettenen,
1999; Branke & Deb, 2005, and we will not cover treious alternative ap-
proaches here. Suffice to say that in the expeeiguetailed later, the EMO algo-
rithms were designed to find whole Pareto frontshwhe expectation that a hu-
man decision maker would make the final decisioingisthe information
incorporated in the output Pareto front.

Example 1: Instrument Optimization in BioAnalytical Chemistry
Modern biotechnology and bioanalytics often invelMarge-scale experiments

which impose heavy demands on sophisticated latryraistruments. To achieve
timely throughput, these experiments often necagsitsing configurations of in-



29

struments that go beyond the manufacturer’s recamet settings. This situation
happened in the ‘HUSERMET’ project, which was alambration between sev-
eral UK health authorities, two pharmaceutical canips, and the University of
Manchester, undertaken between 2006 and 2009 (wwsethet.org). In this pro-
ject, human blood samples were collected from adtd@@®00 people over a three
year period, with te aim of understand ovarian earand Alzheimer’s disease in
terms of the variations in metabolites (the chefcaducts of metabolism) pre-
sent in patients suffering from, or free from, theliseases. The samples were ana-
lysed with the help of various modern technolodias characterizing complex
samples, including laboratory instruments that guened gas-chromatography
mass spectrometry. The configuration of such imsénts is always subject to a
degree of optimization in order to ensure thatdhalytes being detected can be
seen, with maximal sharpness and minimal noises Biptimization is usually
(though not alwaysad hog subject to much domain knowledge.

In the HUSERMET project, the need for a betterrinsient configuration op-
timization process arises from: the unusually langenber and diversity of me-
tabolites to be detected (aound 2,000), the piafetotvary around 10 interacting
instrument parameters, and the significantly cotiflg nature of the optimization
objectives. Instrument settings were needed thawed fast processing of sam-
ples (preferably well under an hour), which confliwith the desire to maximize
the detection of the full complement of metabolaétow noise.

Optimizations of two instruments have been regbitedetail in O’'Hagan et
al, 2005; 2007), respectively. The former studycesgsfully used the evolutionary
multiobjective algorithm PESA-II (Corne et al, 2Qpkbut that study also directly
inspired the development of the ParEGO algorithmaiifles, 2006), a multiob-
jective algorithm that is a hybrid of a surrogatedaling approach and an evolu-
tionary algorithm. ParEGO was then used in the mecdudy successfully, and
settings derived from the evolutionary algorithmsoth cases were subsequently
used for the instruments to process the taskseofithSERMET project.

The major challenge in that project was the limitednber of function evalua-
tions that could be done. A function evaluatios tig an expensive instrument for
an appreciable time, when it could otherwise belusere directly furthering the
project’s needs. This was even more bothersomengive need to try to optimize
three objectives simultaneously (chromatogram pesigaal/noise ratio and sam-
ple throughput). Only one instrument was availabtel a single analysis of a se-
rum sample takes between 15 minutes and over an Tibe optimization process
used 400 evaluations in total, with the EAs cofitrglthe instrument settings and
loading samples through a robotic interface thas weasigned especially for the
optimization process. In figure 8 we can see someroatograms, which indicate
the instrument’s performance characteristics beopper) and after (lower) op-
timization. The optimized result achieved approxihathree-fold increases in
the quantity of peaks visible, whilst at the saingtmaintaining the signal/noise
ration at low levels, and achieving throughputafgples in around 20 minutes.



30

(a)
g s
|
|
" f\ l.-ml'l. l IUHLIL J“ . | L
30 400 00 il00] T BOD
Retertion Time / zacs
(b)
2
i
5
r\..._d LMJL.“MLN / J

300 400 500 600 00 8O0 900 1000 1100 1200

Retention Time / zeca

Figure 8: Chromatograms indicating detection pengonce of the instrument op-
timized in the HUSERMET project. (a) from the ialtigeneration of search; (b)
towards the end of the search process. In (b), tmumber of peaks and the
range of retention times over which peaks are tledebave improved, while

maintaining noise at low levels.



31

Example 2: Evolving Real DNA on Custom Microarrays

Another example covered in more detail in Knowt2309) concerns the design of
pharmacologically-active, highly-targeted macromncales. This is a significant
goal in modern medicine, especially in the contaxab initio design, where we
seek a molecule with specific properties and agtivut have little or nothing to
go on (in the sense of existing molecules with kimproperties). In recent re-
search, novel microarray-based technology has beed in the automation of
suchab initio molecule design. Experimental biotecthnology platfs are now
available which can synthesise, and then expermtigriest in a variety of ways,
any specifed DNA sequence. Being able to synthemigegiven sequence, and
subject it various tests, means there is far lessdrfor computational models
which, in the current state of the art, are fanfrgood enough (or fast enough) to
support such a process.

The microarray used in the work described next (amore fully in Knowles
(2009) and references therein) is the so-calledddusrray technology, available
from Combimatrix Corp, which can be used to synigeesip to 90,000 specific
bespoke DNA sequences of up to 40 bases lomg imgéexperiment. Once the
sequences have been synthesized. they can be fimstedariety of properties, but
usually the main property of interest is the apiliv bind to a particular target
molecule. In the testing (or assay) process fodibop ability, the chip holding the
sequences is ‘washed’ with a solution containing tdrget molecule, and some
form of fluorescent tagging is used so that bindiag be observed; further auto-
mated processes can then estimate the strengthdifidy.

Short strands of DNA (or RNA), which bind strongly specific targets are
calledaptamers and hundreds of these have been developed fideavariety of
applications. Before the recent microarray-basedkvad Manchester (which is
what we are discussing here, with full details imidht et al (2008)), new aptam-
ers were almost always discovered by a methoddc&ELEX (Tuerk & Gold,
1990), orin vivo selection, in which the DNA strands are evolved itest tube by
repeated rounds of high-pressure selection andoranmhutation. As indicated,
however, in the microarray approach we know prégigee sequence information
for every sequence tested, and can even exacttyfgpeutations or other varia-
tions to perform. This is not the case in SELEXJ ane of the many benefits for
the microarray approach is that it allows extrem@diier possibilities for borrow-
ing and exploiting algorithms from evolutionary goatation, machine learning
and statistics.

Knight et al (2008) reports the first use of anlationary algorithm to produce
a DNA aptamer on the B3 Combimatrix platform. Théppened after ten genera-
tions of evolution, eventually discovering seve3@ibase long strands that bound
very strongly to the target molecule, allophycodgahe work in Knight et al
(2008) used a DNA chip that could hold 6,000 steanflith 90,000 strands on a



32

chip now possible in more modern technology, onénrohallenge (from the op-
timization perspective) is to determine the besy teaexploit such massive popu-
lation sizes. Wedge et al (2009) have recently@epl such questions in silico
simulations using contrived search landscapes,edlsas real trials on the DNA
landscape, revealing, among other findings, thghdn than standard mutation
rates consistently outperformed a range of othtupse This echoes findings in
Corne et al (2003b), which also explored large fetpan sizes and contriveid
silico landscapes, partly to inform the (as then) emeréjeid of closed loop pro-
tein evolution.

Some Concluding Notes on CL-EMO

For the examples described above, and several mavhich CL-EMO has been
used, building accurate computational models tbatccusefully replace real ex-
periments is practically infeasible. The closeddalternative offers a more effi-
cient and effective way towards the discovery ofowative solutions, easily mak-
ing up for the time and expense of tying down theysical kit for the
experimental period. One question often worth agkhlmowever, is whether we
need to automate the optimization process at aligh scenarios. There is a proc-
essing step in which a computational process (leege,an evolutionary multiob-
jective optimization algorithm) considers the lategperimental evaluation re-
sults, and outputs sample designs for the nexteseguof physical evaluations —
but this operation could easily be done instead loppmain expert. On the other
hand, though, there are several objections to suchan involvement: even ex-
perts can over-interpret results that are affebigaoise or similar factors; simi-
larly, humans are very prone to reason on the ldisisnple models, ignoring in-
teractions between parameters. Meanwhile theréwigya a very real danger of
experts preferring solutions that are (or are ctoy&nown designs.

Problems where accurate computer modeling is gilfiéss and for which
closed-loop optimization is the efficient soluti@me really quite common. For the
moment, the main focus of the third author is oabpgms in modern biology,
where there is a growing take-up of multiobjectioptimization. Meanwhile,
many other substantial areas are able to benefittlgrfrom CL-EMO; apart from
drug discovery and development, large-scale problsach as flood defence de-
sign, forest fire control strategies, the locatidnmenewable energy plants, and the
task of genetically engineering more pest-resistaotl crops and energy crops,
can all be seen, to varying degrees, as closedgomgems.



33

3.2 Innovization

In this section we describe a new ideeovization introduced in Deb & Sriniva-
san (2005; 2006), which (typically) exploits mulijective evolutionary computa-
tion to find new and innovative desigminciples Although optimization algo-
rithms are routinely used to find an optimal saloticorresponding to an
optimization problem, the task of innovization sthes the scope beyond an op-
timization task and attempts to unveil new and wative design principles relat-
ing to decision variables and objectives, so thateaper understanding of the
problem can be obtained.

Innovation is a common goal for engineers and aesiy but there are actually
very few (arguably no) systematic procedures ftinloky achieving innovations.
Goldberg (2002) however suggests that a ‘competgmietic algorithm can be an
effective way to achieve an innovative design (emited there are numerous ex-
amples of innovative designs being discovered lutionary computation, in-
cluding some discussed elsewhere in this chaptenuever, the idea of innoviza-
tion (Deb & Srinivasan, 2005; 2006) extends thiguament considerably, and
gives a systematic procedure that can arrivedstegper understanding of a given
engineering design problem. This systematic proeeday lead to the discovery
of new design principles — in particular, princplhich are common to the di-
verse collection of optimal trade-off solutions.cBucommon principles may in
many cases provide a reliable recipe for solvinggiinstances of the problem at
hand. In this section we will explain the innovipat procedure, and illustrate it
with two examples in engineering design. The maldri this section borrows
much from Deb & Srinvasan (2005), which intrdoctied idea, and contains sev-
eral more examples. However, before looking atptezedure and examples, it
will be helpful to recall some basics about thealisuconflicting nature of objec-
tives in the design process.

Multiple Conflicting Objectives in Design

The central idea in innovization involves the preseof at least two conflicting
objectives for the design problem at hand. Thiisrom a limiting constraint —
as argued in many places (see in particular Caraé¢ (2003) for an introductory
account of this argument), almost all realistichpeons naturally involve several
objectives.

Consider a typical design problem with two or mooaflicting goals, such as
an engine or generator whose mass needs to be izédimbut whose output
needs to be maximized. Such a two-objective opttion task results in a set of
Pareto-optimal solutions (see Figure 7). One ofélk&reme’ solutions will be the
best if we are only interested in mass, while ttieeoextreme solution will be
ideal for the output consideration, and there wéllally be several solutions inbe-



34

tween these extremes, also optimal in a sensef alhich share the property that,
if they are better than another Pareto optimaltgmiun one objective, they will
be worse in the other. The intermediate solutioesravariably good compromises
within the extremes, and the solution that may &wdly be chosen by the de-
signer will often be among these, and its choick efien by helpfully informed
by the knowledge that the designer obtains by vigvthe shape and the nature of
the tradeoffs displayed by the entire set of sohdithat form the discovered
Pareto front. However, what is of particular insriere is that this set of solu-
tions will typically be very diverse, but all shagi the property of Pareto optimal-
ity. The idea of innovization arises from the af¢rto see whether this property
of Pareto-optimality, for any given problem, is rifast in concrete features that
the diverse solutions share. Another aspect ofishikat the process of obtaining
such a wide variety of solutions is itself a sigraht investment in computation
time; innovizationis a way to exploit this significant investment jpgrforming a
posterior analysis of the obtained set of tradesoffitions, which may result in a
set of ‘innovized’ principles relating to the giveasign problem.

In designing an electrical motor, for examplesthosterior analysis might re-
veal a feature of the diameter of a certain compbaad the power output that is
shared by all of the Pareto-optimal solutions mttather solutions. Any such re-
lationships discovered would clearly be of greaportance to a designer, and
perhaps point towards a recipe for future desighdan the same domain, as well
as spark new theoretical insights into the probl€hese are just two of a range of
benefits that so-called ‘innovized principles’ ablad to, as discussed further in
Deb & Srinivasan (2005), along with convincing argnt that we can often ex-
pect such principles to exist.

How to Innovize

The innovization procedure proposed by Deb & Seran (2005) consists of two
phases: in the first phase, the idea is to simplya obtain the Pareto optimal so-
lutions of the design problem in question. In seeond phase, they then analyse
the solutions and extract innovized principles. Tit phase is not as straight-
forward as it sounds, since, of course, we usuzdly never guarantee that we
have found true optima for a realistic problemleas we have performed an ex-
haustive search. However, the idea of the firssphia to do as well as we can in a
reasonable time, since it is expected that the aghafh obtaining valid principles
of Pareto-optimality is improved if we have true (@ry close to true) Pareto-
optimal solutions. In Deb & Srinivasan’s procedutés centrally involves mak-
ing use of NSGA-II (Deb et al, 2002) (one of thesmnprominent and effective
evolutionary multiobjective optimisation algorithjres the main engine in finding
the Pareto front, but initially informed by a siagibjective method that has been
used to find the extreme points on the Pareto fieomd followed by various appli-
cations of a local search method and the Normaktaimt Method (NCM) (Mes-



35

sac & Mattson, 2004) to locally improve the outpatutions from NSGA-II as far
as possible.

The second phase of innovization is then the malgsthe assumed Pareto op-
timal solutions that emerge from the first phaseer€ is no fixed recipe for this
process, other than to employ the usual commonresand expertise that under-
pins a data mining and knowledge discovery taskearching for commonality
principles among these solutions that may becoraasfble innovized relation-
ships. Deb and Srinivasan (2005) also pursue ‘hilghvel innovizations’ after this
phase, which involve returning to the original dewb, but investigating different
areas of the design space by looking at neighbgyinblems (e.g. with different
boundaries and constraints on the design tasle)tiiein enables new principles to
be discovered that are likely to be at a higheelléran previously, mapping de-
sign constraints to design recipes.

We now describe just two from the increasing cdiéecof results of this above
innovization procedure in engineering design appilims. These were first de-
scribed in Deb & Srinivasan (2005), among sevettatoexamples.

Example 1: Gear Train Design

Deb & Srinivasan (2005) give the example of théglesf a compound gear train,
in which a specific gear ratio between the drived driven shafts is desired. The
problem is illustrated in Figure 9, and is a mamifion to a problem solved else-
where (Kannan & Kramer, 1994; Deb, 1997). The dbjeds to set the number of
teeth in each of the four gears in a way that mirés the error between the ob-
tained gear ratio and a required gear ratio of BB3while also minimizing the
maximum size of the four gears.



36

Ta
Td D
Driver

Figure 9: A gear train with four gears (circlesheTtask is to achieve as close as
possible a gear ratio of 6.931:1 between the dawver follower, while minimizing
the sizes of each gear.

Followel

The diameter of a gear is proportional to the (iat® number of teeth, so these
objectives can be formalised in terms of four ietedecision variablex = (X;, X,

X3 X4) referring respectively to the numbers of teetlgéarsTy (driver), Ty, T, and

T¢ (follower). The problem is then o minimize bdttandf, below:

£,(x) = ‘6.931—ﬁ
XX,

f,(X) = max(x,, X,, %;X,)
subject to the following constraints:

(9 _
6.931
12< X %,, %5, %, <60

The constraints ensure that the difference betwleenlesigned gear ratio and the
desired gear ratio is no more than 50%. After ploaeof the innovization proce-

dure, a collection of assumed Pareto optimal swhstiwas obtained. Table 4
shows the two exreme solutions.



37

Table 4: the extreme solutions obtained for ther den design problem in Deb &
Srinivasan (2005).

Solution Ts | Tp Ta T | f,
Minimum error 20| 13 53 34 ~0.00023 53
Minimum maximal gear size 12 12 22 P3  3.4171 23

Phase two of the process then revealed severatstiteg principles relating to the
problem, covering the whole set of Pareto optinsdutsons, which we summarise
from Deb & Srinvasan’s account as follows:

First, In order to minimize the maximal gear sigears Td and Tbh need to have
almost the smallest allowable number of teeth. @bas close as possible to the
desired ratio (with error less than 0.1), the TH a@d values need to grow some-
what, but still remain close to their lower boundsother finding is that the
maximum allowed gear size always occurs in a Payptional solution, either for
Ta or for Tf. It is also noted that two distingpes of solutions emerged: (a) gear-
trains with very low error (very close to the dedirgear ratio of 6.931:1), in
which there is a great variety of ways in which thembers on teeth in the four
gears combine to almost achieve the 6.931 ratithénfirst objective; (b) gear-
trains with a comparatively large error, with ideat first and second-stage ratios
(except the one with the largest error). Althoudarge error can happen for many
different combinations of errors in the two stagés, pressure of the second ob-
jective causes both stages of gear-ratios to baticde. Finally, regarding small-
error gear trains, half of them have a larger itage ratio than second stage, and
half have a larger second-stage ratio.

This is a fairly simple and straioghtforward exaephlthough it brings out
several interesting properties of optimal solutiofshis type of gear-train design
problem which are difficult, if not impossible, iofer from the statement of the
problem. One implication, for example, concerniagipes for gear train design, is
that the process could be guided according to lopoitant it is to closely meet
the constraint. If a low error is desired, thensitclearly important to examine
many possible combinations of gear sizes. If adighrror can be allowed, then
solutions with minimal size strongly tend to hawgual first-stage and second-
stage ratios.

Example 2: Welded Beam Design
This is a much-studied problem in the context ofgk-objective optimization

(Reklaitis et al, 1983), in which a beam needsaevielded onto another beam and
must carry a certain lode as illustrated in Figure 10.



38

Figure 10: the welded beam design problem.

The problem is to establish the four design paramgbeam thickness and width,
respectivelyb andt, length and thickness of weld, respectiviebndh) in a way
that minimises the cost of the beam, and also m#gsthe vertical deflection at
the end of the beam. The overhanging portion obteemn has a fixed length of 14
inches, and is subject to a forEeof 6,000lb. Clearly, an ideal design in terms of
cost will be less rigid and hence not ideal in tewhdeflection, and vice versa. A
formulation of this problem (Deb & Kumar, 1995; D&®00) gives the objectives
as follows, where indicates the vector of design parameters:

f,(x) =1.104710h? [ + 0.0481 10 (b(14.0 +1)
2.1952

fo(x) =

2(X) t3[b

subject to these constraints:

7(x) 13600
o(x) <£30000
b>h

P.(x) = 6000
0.125< h,b< 50
01<1,t<100



39

The first constraint specifies that the shear stegsthe support location is below
the allowable shear stress of the material (13)Q the second ensures that the
normal stress at the same location is below theniadis allowable yield strength
(30,000 psi); the third ensures the obvious prattonsideration that the weld is
not thicker than the beam, and the fourth ensuratsthe applied loa# is below
the allowable buckling load of the beam. The highdylinear stress and buckling
terms are as follows (Reklaitis et al, 1983):

r(X) = (7') + ()2 + (1777)1,/ 02517 + (h+1)?)
= 6000
J2h!
v _ 600014+ 051)y 025( + (h+1)?)
2(0.707h1(12 112+ 025(h +2)?))
o(x) =504000'tb
P.(X) = 64746022(L- 0.0282348)th°

Following phase one of the innovization procedarset of Pareto optimal solu-
tions was obtained, and Table 5 shows the extrevirgspof this Pareto set, along
with an interesting intermediate point which Deld &rinivasan refer to &g,
which comes into the innovized principles discussext.

Table 5: the two extreme solutions and an intemgstitermediate solutiof obtained by
Deb & Srinivasan (2005) for the wedled beam degigrblem. The units of the design pa-
rameters are inches.

Solution h I t b fi fy

Minimum cost 0.2443 6.2150 8.2986 0.2443 2.3815 1%/0

Minimum deflection | 1.5574 0.5434 10.000 5.000 36314 0.00044

Intermediate sol'M | 0.2326| 5.3305 l0.00b 0.2356  2.5094 0.0093

Deb & Srinivasan’s analysis of the many Paretotswhs obtained (spread liber-
ally between those shown in Table 5) revealed ¢lleviing innovized principles:
First, two distinct behaviors were found: from th&ermediate transition solu-
tion T (shown in Table 5) towards higher-deflectsmiutions, the objectives be-
have differently than in the rest of the trade+effion. For small-defllection solu-
tions, the relationship between the objectives ala®st polynomial, with; being
roughly proportional to 1% Next, it was found that, for all Pareto-optiraa-



40

lutions, the shear stress constraint is activethtn small-deflection (large-cost)
cases, the chosen bending strength (30,000 psi)adadiable buckling load
(6,000 Ib) are quite large compared to the develgteess and applied load. Any
Pareto-optimal solution must achieve the maximureaststress value (13,600
psi). So, to improve the designs in this regionhwitt sacrificing deflection, it
would be necessary to use a material with a laslgear strength capacity. A third
overall principle found was that the transitionmddil) between two trade-off be-
haviours is related closely to the buckling coristradDesigns with larger deflec-
tion (or smaller cost) reduce the buckling loadazdty. When buckling load ca-
pacity becomes equal to the allowable limit (6,000 no further reduction is
allowed. After this point (towards small-deflectisolutions), the beam thickness
must reduce in inverse proportion to the with deften objective in order to retain
optimality.

Next, for small-deflection solutions, the beam Widémains constant. This in-
dicates that for most Pareto-optimal solutions, whdth must be set to its upper
limit. Although the beam width has opposie effemtscost and deflection, it is in-
volved in the active shear stress constraint, émmbsshear stress reduces as beam
width increases, it can be argued that fixing be@dth to its upper limit would
make a design optimal. Thus, if in practice the obgective is not paramount, so-
lutions may be explored which have a fixed widthe(tmaximum 10in in this
case), thereby simplifying the inventory. Howewaong the Pareto tradeoff sur-
face, the weld length increases with increasindedgbn, and the weld thickness
decreases with increasing deflection. Deb & Sriséwra (2005) noted that these
phenomena are counter-intuitive and difficult t@lein from the problem formu-
lation. However, the innovized principles for amig at optimal solutions seem to
be as follows: for a reduced cost solution, keepnbevidtht fixed to its upper
limit, increase weld length and reduce beam and weld thickndsar{db). This
‘recipe’ is valid while the applied load is strigtmaller than the allowable buck-
ling load.

Beyond that point, any reduction in cost must cdroe reducing beam width
below its upper limit, increasing beam thicknesy adjusting the weld parame-
ters so as to make the buckling and shear stresstramts active. Finally, the
minimum cost solution occurs when the bending strequals the allowable
strength (30,000 psi), at which point all four camts become active.

Finally, to achieve very low cost solutions, th@dmized principles are dffer-
ent: for a reduced cost solution, we need a smbfbam width, but larger beam
thickness and weld parameters.

Deb & Srinvasan report a higher level run of theoivization procedure for this
case, in which innovization was redone separataiyifferent values of the three
allowable limits in the first, second and fourtmstraints above. It was clear that
all three cases produced similar dual behaviofgdifit characteristics on either
side of a single transition point) to that obserirethe original case. All other in-
novized principles mentioned above (such as theteoh nature of beam width,
beam thickness being smaller with increasing defiec and so on) remained



41

valid,. And significant further insights were obted into the overall design prob-
lem, detailed in full in Deb & Srinivasan (2005).

Innovization: Concluding Notes

When we face an optimization problem with at le@asi conflicting objectives,
the set of optimal solutions is very diverse. Hgvibund such a set effectively
and efficiently using evolutionary multiobjectivgptomization (judiciously com-
bined with other methods that help locally optinpigbe notion ofinnovizationis

to analyse this set of solutions to see if theeea@mmonalities and patterns that
might translate into general design principlestf@ problem at hand. It turns out
that this is true, and interesting new principldgficult or impossible to have
been obtained otherwise) have emerged from sestrdies to date. The emerg-
ing truth seems to be that solutions along a Pdretd do often seem to share
similarities that seem to be principles of optirafor the problem at hand, irre-
spective of location on the Pareto front.

In this section we have borrowed results from just case studies to illustrate
the innovization principle. Deb & Srinivasan (20@5)ow several more examples,
including spring design and multiple-disk clutctake design, while one more re-
cent study (Datta & Deb, 2009) displays an excéke@mple of the potential im-
pact of innovization (and hence indirectly, of ex@nary multiobjective optimi-
zation) by finding new innovized principles for teetup parameters of a turning
process using a lathe and cutting tool that arevadwelmingly common in industry
workshops. Finally, there is no particular reasorbélieve that innovization is
constrained to engineering design. It will be iag#ing to see future applications
of this idea in other design fields, such as eleaircircuits, optical systems,
communication networks, and the many other areashich evolutionary mul-
tiobjective optimization is increasingly used.

4. Logistics and Combinatorics Made Easy: Robustdutions
and New Algorithms via Natural Computation

In this section we consider two areas which exdnpiow natural computing
(largely, learning classifier systems and evoluigncomputation) has provided
us with highly successful ways to address diffidaliistics problems. Logistics
usually relates to scheduling and timetabling peotd of various kinds, but we
also include here the closely related and genaal 6f combinatorial problems in
which a discrete collection of items of some kindsinbe arranged in an optimal
way. There are innumerable examples of natural coimg applications in this
domain, and our first case is simply a selectioora# (of several possibilities) that
combines the attributes of: ‘interesting’, “"reabsld’, and difficult’ (we look at



42

the case of a real-world truck scheduling problem. then move on to perhaps a
more profound area that has emerged from the B®8d] in which, rather than
use evolutionary computing to solve ‘one problena ¢éitme’, we consider the use
of natural computing to discover nealgorithmswhich can then in turn be used
on entire classes of problems, solving them effitjeand effectively. This is an
area within the emerging field of ‘hyper-heuristidsut with the particular focus
on designing new algorithms which we refer to apé&s-heuristics’.

4.1 Safe Streets via Robust Route Optimization

In this section we describe an application of redtaomputation in a critical sea-
sonal logistical task, covered more fully in Haretaal (2006). Local Authorities
in countries such as the UK, with marginal wintémetes, are responsible for the
precautionary gritting/salting of the road netwankorder to allow safer travel in
icy conditions. This winter road maintenance taslextremely challenging as
well as critically important to the locality, with potentially major impact on both
business and day to day life.

As Handa et al (2006) note, in the case of the tiKre are around 3,000 pre-
cautionary gritting routes that cover about 120,R00(30% of the entire UK road
network). On nights with forecasted snow or itesse routes need to be treated
S0 as to ensure the safety of road users. Thisayypcosts between £200 to £800
per km or road (Cornford & Thornes, 1996). Accuredad surface temperature
prediction is required, in order to decide whichds need to be treated, however
this decision can often be uncertain. Optimizatidrihe route to be traveled by
the gritting/salting trucks also plays a crucialertbiere. The consequences of a
wrong decision — not treating a road that evenjuaticomes dangerous — are seri-
ous, but if grit or salt is spread when it is notually required, there are obvious
financial and environmental drawbacks. The goajrdting route optimization is
to minimize the financial and environmental costhjle ensuring that roads that
need treatment will be gritted in time. Furtheiisiessential that gritting routes are
planned in advance, to enable effective use oftdidhresources (e.g., trucks and
salt).

Mostly, the design of gritting routes relies héyaan local knowledge and ex-
perience. A ‘static,” often paper-based, approadypically used to optimize grit-
ting routes, staying within constraints imposedthey road network itself, vehicle
capacities, the number of vehicles and the availabfsonnel. In this section, we
describe the application of an evolutionary alduoritto this task. Covered in more
detail in Handa et al (2006), we discuss here ingaRoute Optimization (SRO)
system that combines evolutionary algorithms whith fatest version of the Road
Weather Information System (XRWIS) commonly useddmgl authorities.



43

The Salting Route Optimization (SRO) System

A very important aspect of the SRO we discuss her@s integration with
XRWIS, which, recently trialled by the UK Highwayagency, is a high-
resolution route-based forecast system which predmad temperature for a 24-
hour period. XRWIS models surface temperature antlition at thousands of
sites in the road network. Data are collected @leach gritting/salting route by
conducting a survey of the ‘sky-view factor’ (a rmege of the degree of sky ob-
struction by buildings and trees) (Chapman et @022. This is then combined
with other geographic, land-use, and updated melegical data to predict road
conditions at typical spatial and temporal resolusi of 20 metres and 20 minutes
respectively. The output is displayed as a colaged map of forecast road tem-
peratures and conditions that is then disseminatétghway engineers.

In the SRO, XRWIS provides forecast temperaturdriigions over
time that are then input to an evolutionary aldoritmodule. Each temperature
distributions (different distributions for differeriuture timepoints), along with
commercially available routing data, is transfornieid an instance of a capaci-
tated arc routing problem (CARP) (Lacomme et aQf0That is, each tempera-
ture distribution suggests a specific set of roadshe network that need to be
treated. The CARP is then defined as the needchtbributes that serve this spe-
cific set of roads in a reasonable time-frame, gisia more than the available ve-
hicle numbers and capacities, and ideally miningizime number of vehicles used.
An important point is that each timepoint leads wifferent CARP instance, since
the set of roads that require treatment may beerdift. The overall goal of the
SRO system is to find a suitable series of saltimgies which ensure that the
roads that require treatment are treated in timealso ensuring that the routes do
not vary too much, which in turn causes consdierabhfusion and distraction to
the workforce. In this sense, the SRO system fadsbust solution, which en-
sures to cover the most important sections of vhel network.

Given the series of CARP instances, the evolutipadgorithm module finds
solutions that are simultaneously good for all @y of these instances. In par-
ticular, a specially designed memetic algorithnused (a combination of evolu-
tionary and local search) as described next. kdbpproach, the fitness of a solu-
tion is calculated according to the entire ensembl@ARP instances. Howeve, at
each generation, the operators and local seardegses concentrate on a specific
instance. The different instances are weighted,thisdweighting controls the se-
lection of the instance in each generation, in § described in the following.

Robust Solutions for Salting Route Optimization

Searching for robust solutions is currently a digant topic in the field of opti-

mization in uncertain environments, since in margbfems the decision variables
or environmental parameters are subject to noiséhis case, Handa et al (2006)
required that solutions to the different CARP insts be as similar to each other



44

as possible (so that daily changes in the temperatistribution do not lead to

significant disturbance in the route to be folloyeahile at the same time requir-
ing good performance in terms of the costs of thdas. Handa et al modelled a
robust SRO solution as one which optimised thealhg:

F(X) = [E(X,a) p(a)da

in which X anda indicate route design variables (routes and ptessémpera-
tures),E(X, a) indicates the distance cost of gritting rouXegiven temperature.
while p(a) indicates the probability of temperature Hence, the idea is to find
ideal gritting routes for each temperature distitny but weighted by the prior
probabilities of the forecast temperatures.

Although the distribution in temperature will vagigily across a road network,
warmer (colder) sections are usually warmer (cgltean the rest of the network.
So, even on cold nights, some warmer sections mayeguire salting, whereas
colder sections may need treatment even in relgtivarm conditions. The fithess
function, as stated above, is impossible to compu#tly since its components
are largely unknown; instead it is approximatedibing a number of typical tem-
perature distributions. Considering this and othsues, the fithess function used
by Handa et al (2006) was as follows, given a s&traperature distributions,:

o E (a)

in which E (&) represents the difficulty of finding a good rodte temperature
distributiona,, and thew; are weights, summing to 1, which balance the impor
tance of different temperature distributions durthg optimisation process. The
weights are adapted during evolution in a way thaintains a focus on the routes
that are proving more costly, while tB&(a) values are lower bounds on the cost
of the routes for each temperature distribugigractually pre-determined by prior
runs of the memetic algorithm for this purpose dbesd in Handa et al (2005).

Handa et al (2006) used a permutation-based emgedi follows. An in-
dividual solution comprised a paermutation of &s [road sections), interspersed
with symbols representing individual trucks. Foaewle, the individual:

26s15471s283

indicates a gritting route for two trucks; trucls Ybute is road sections 5, 4, 7 and
1 (in that order), and truck 2’s route is road s 8, 3, 2 and 6 (note the wrap-
around involved in the interpretation.

At each generation of the memetic algorithm, cressqthe EAX operator
proposed by Nagata and Kobayashi (1997)), and kemich methods are applied
with regard to only one CARP instance (that is, teraperature distribution) in
every generation. That is, the for example, thallsearch is guided by the fitness



45

according to the selected instance only. The chofidastance is made stochasti-
cally according to the current weights of the terapgre distributions. However,
between generations, the fithess of each solu@alculated according to the en-
semble of instances using the fitness function rilesd, and this then guides the
selection of parents for the next generation.

Comparisons and Conclusions

In experiments by Handa et al (2006) to test atidat this approach, robust so-
lutions were evolved by using 10 different tempema distributions, and these
were then compared with the routes currently usgdSouth Gloucestershire
Council in the UK.

Figure 11 shows an example of routes found for ld day, comparing the
SRO system’s routes (on the left) with the existiogtes (on the right).

Truck 1
Truck 2
Truck 3

Truck 1
Truck 2
Truck 3

Truck 4
e TTUCK 5
Truck 6
Truck 7
Truck 8
Truck 9

Truck 4

4 s
——— Trucks
Truck 6
Truck 8 b
Truck 9 ‘%
— Truck 10 /

Truck 11 / S

e Truck 10
Truck 11

Figure 11. Left: routes optimised by the SRO sysfema cold day in South
Gloucestershire; Right: existing routes obtainedhbbsnan experts.

In comparison with the routes that were in usénattime, the robust solutions de-
livered by the SRO were able to provide more thd% Bavings in terms of total
distance travelled by the available trucks.

The SRO system was developed for finding optimirgloust solutions for
salting trucks, and as such it is an excellent gtamf an important real-world
combinatorial problem that can be solved effectivel a system with natural
computation at the core. In this case, especidlhgrgthe integration with the
XRWIS, the system can be regarded as proof of qurfoe similar tasks that need



46

careful planning in relation to weather conditiossch as waste collection and
parcel delivery.

4.2 Hyper and Super Heuristics

In this section we briely consider a fairly new hwt in search and optimization,
variously called hyper-heuristics or, as an emeygerm in the community refer-
ring to a specific brand of approach, super-hegsstn the context of selected
applications of natural computation, the specigleas of super heuristics is that
they represent the use of a good global optiminatiolearning method — hence,
typically evolutionary computation or a learningssifier system — to discover
new algorithmsthat solve problems of a given kind. This is apaged to, and
substantially more general than, using optimizatioriearning to solve a single
problem instance.

In very broad terms, the general notion of hypeurfstics refers to the idea of
using an algorithm that manipulates a set of htcsisn order to solve a given
problem. This is indeed a very common activity thelays, and can be seen in
many published applications of evolutionary alduoris, and of meta-heuristics in
general (including, for example, tabu search antukited annealing). Typically,
such an approach is sometimes called a hyper-tieurighe case that the encdo-
ing used involves lowe level heuristics in an imgggd way. That is, rather than an
encoding of a solution being a direct representatiba solution, the encoding is
instead an indirect representation (we will lateyk at examples). The interesting
point is that, in some cases, an encoded solutipa fiven problem can actually
be interpreted as an algorithm that can be apptiedlarge collection of instances
of that problem, not just the instance currentljngesolved. In many so-called
‘hyper-heuristic’ applications, this reuasbility thfe encoding of a solution is only
a side effect. When the term ‘super-heuristic’ $edi herein, this is meant to refer
to the idea that evolving new general and reusalgerithms (for classes of in-
stances, rather than a ingle instance of interisstie specific goal of the process.
However we note that ‘super-heuristics’ seems t@teen first used in the litera-
ture by Lau & Ho (1999), to denote something mddia ¢o standard hyperheuris-
tics, in which a set of heuristics are engineengtiigher level algorithms in order
to solve a specific problem instance. In this segtive describe the ideas, amid
some examples and historical notes. For alternathck more detailed accounts,
we recommend a 2003 book chapter (Burke et al, R@d3he current Wikipedia
article on hyper-heuristics.



47

Potential Impact of Super-Heuristics

The impact and importance of super-heuristics aigly evidenced by a negative
point: despite a large collection of case studiandard applications of meta-
heuristics tend to be ‘one-off’ and resource-inteais For example, a particle-
swarm optimisation method developed to solve a Isamathpany's daily process
scheduling problems may seem successful on itstemms, but its existence does
not necessarily accelerate the potential for otlwenpanies with similar (but not
the same) problems to develop similar solutionad,Aypically, the solution itself
may be resource intensive, tying up considerableptding resources every
morning. Also, the devlopment of this solution Ivhiave typically been influ-
enced by a perceived goal for producing soluticngptimal as possible, despite
the fact that daily uncertainties and perturbatimnthe production process under-
line this opimality — i.e. a large number of “reaably good” solutions will have
worked just as well.

In contrast, super-heuristics seem to open up dissibility for producing solu-
tions that, though having an initial cost in deyetent time, are much more flexi-
ble. The ‘solution’ in this context would be a fasbnstructive algorithm that
tends to work well (as well as run much more quicdklan a typical metaheuristic
implementation) on the problems typically facedtbg company, and may well
generalise to similar problems more successfulld aasily than the metah-
heuristic approach.

Hyperheuristics: further notions and examples

Suppose we have an instance of a problem to sbivearticular, it is easier to
think in terms of combinatorial and logistics pretnis, the kind in which we might
build a solution step by step by making a seriedegfisions. For example, if we
have a collection of student examinations to tirbletafirst we might find a room
and a time for the largest exam; then we mightdikeeihich exam to look at next,
then we might decide where to place this next exard,so on. For such problem
domains there is usually an available collection‘lofv level’ heuristics. For ex-
ample, in timetabling a common heuristic is totfsert the events that have to be
timetabled according to some measure of difficuliyere are several such meas-
ures, based on the fact that some events are rifficailtito place than others (e.g.
can only fit in a small number of rooms, and patglyt clash with many of the
other events). One way to do timetabling constwetyi (such algorithms are often
called ‘greedy’) is to repeatedly choose an everintetable based on a difficulty
measure, and then timetable it by finding a plawtatime that suits. Each poten-
tial difficulty measure can be considered a différeeuristic. Similarly, deciding
where and when to place the event are also aestwviliat can be based on a range



48

of specialised heuristics. Very similar can be safidther, if not all, logistic or
combinatorial problems.

With independent roots in the field of automaté&thping and scheduling
systems (Minton, 1988; Gratch et al, 1993; Cros¢/&lker, 1994), an early and
influential example of the hyper-heuristic approaeing used for solving specific
problem instances (i.e. one at a time) is concemighl open-shop schedulling
problems in Fang et al (1994). In Fang et al's waskveral low level heuristics
were considered, all of which were relevant topghablem of ‘open-shop’ sched-
uling, in which there are, sajyjobs that need to be scheduled, each consistiag of
certain number of tasks. Each such task must uspeaific resource (usually
called a machine) for a specific amount of timéh@lgh the tasks that comprise a
given job may be done in any order (when the oofiéasks within a job is con-
strained, it is a job-shop problem). For examplés Pnay arrive at a processing
centre with the operating system installed, andinieehave a number of applica-
tions installed (for which order of installationtusimportant) by a number of ex-
perts, each expert in the installation of a paldicapplication. Each ‘job’ is a PC,
which may have its own individual specification asubset of applications that
need to be installed; this amounts to an open shbeduling problem.

Fang et al (1994) used an evolutionary algorithinictv constructed solutions
as follows. A chromosome was a series of pairswgfgers [t0,h0,t1,h1,...] inter-
preted from left to right, meaning: for eacHconsider theti-th uncompleted job
(always interpretable, when treating the list oEempleted jobs as circular) and
use heuristidi to select a task to insert into the growing scheedu the earliest
place where it will fit'. Examples of the lower lehheuristics used are:

e choose the task with the largest processing time;

» choose the task with the shortest processing time;

« find the tasks that can start earliest (there neaynbre than one) and
choose the one with largest processing time;

« find the tasks that can be inserted into a gapérsthedule so far, and
pick one that best fills this gap

This approach, was called ‘evolving heuristic ckgi@and led to excellent re-
sults on benchmark problems, including some new fessilts at the time of pub-
lication, and it marked the beginning of a waveirdérest in what were later
temed ‘hyper-heuristic’ approaches. An exampleofeihg this work was that of
Hart and Ross (1998), who looked at job-shop sdiegiproblems (where the or-
dering of tasks within a job is pre-determined g-,ein our software installation
example, it could well be the case that applicatioeed to be installed in a certain
order). Their approach relied on the fact thatehisralways an optimal schedule
which is ‘active’, meaning that to get any task pbeted sooner you would need
to change the order in which tasks from differentisj get processed on one or
more of the machines, Meanwhile, a well-known Hetigialgorithm was ex-
ploited (due to Giffler and Thompson (1960)) thahgrates active schedules. We



49

now follow the explanation by Hart & Ross (1998dan Burke et al (2003), in
explaining their approach. Giffler & Thomson’s isetschedule generation algo-
rithm is as follows:

1. let C = the set of all tasks that can be scleetnéxt

2. let t = the minimum completion time of tasksGrand let m= machine on
which it would be achieved

3. let G =the set of tasks in C that are to ruimowhose start time is <t

4, choose a member of G, insert it in the schedule

5. gotostep 1.

In step 4 there is a choice to be made, which wpkied in Hart & Ross’ hyper-
heuristic approach. Now consider a simplified wamsof this algorithm, which
only generates so-called ‘non-delay’ schedules.

1. let C = the set of all tasks that can be scleetnéxt

2. let G = the subset of C that can start at thigestipossible time
3. choose a member of G, insert it in the schedule

4. goto step 1.

This time, there is a choice to be made in stapadt & Ross’ approach was to
use an encoding of the form [al,h1,a2,h2,...], agderpreted from left to right,
where theais are 0 or 1, indicating whether to use an iteratibthe Giffler and
Thompson algorithm or an iteration of the non-dedfgorithm, in order to decide
on the next task to schedule, and hieindicate which of twelve heuristics to use
to make the choice involved in the selected alforit This method again pro-
duced excecllent results on benchmark problems.

Finally, before we move on to two examples of wbah be called ‘super-
heuristics’ (.e. where we are evolving general [@obsolvers, rather than al-
gorighms for one instance at a time), we brieflyntien an early real-world appli-
cation of the hyper-heuristic approach. DescrilveHart et al (1998), the problem
that needed to be solved was to schedule the tiokeof live chickens from
farms in Scotland and Northern England, for delver one of two processing
factories. A given instance of the problem arigesnfa set of orders from super-
markets and other retailers, which have to belledfiwithin given time windows.
The specific resources that needed scheduling ofetigo types: the collection of
live chickens from farms was done by a set of feaig squads’ who moved
around the country in mini-buses; the delivery loickens to processing factories
was done by a set of lorries. In general, catcliggads needed to move from
farm to farm collecting chickens, and lorries nektie arrive at farms in time to
be loaded with chickens caught by the squads, hexd éither move to another
farm if able to hold more, or proceed to unloadagirocessing plant (and then
perhaps back to a farm). The principal aim wasaepkthe factories supplied with
work, while attempting to ensure that live chicketid not wait too long in the



50

factory yard, for veterinary and legal reasons.r&éhgere several constraints. For
example, different types of catching squad werdéirdjgished by differences in
their contractual arrangements, relating to the wrteof work they would do per
day or week (including, for example, guaranteedimim amounts of work.
Meanwhile, the order in which a given squad coukitfarms in one day was
constrained according to the status of each farterms of certain chicken dis-
eases, whilst lorry schedules also were subjeatremge of associated constraints.
Overall, the target was to create good schedulésfysag the many constraints,
but that were also generally similar to the kinflsvork pattern that the staff were
already familiar with, and to do so quickly andably.

After several approaches which did not work verylwesing what were the
standard styles of evolutionary algorithm approatthe time (experts in classical
scheduling methods had already been consulted éogdmpany, and had tended
to retreat in terror once the problem had beenritest to them), the eventual so-
lution used two evolutionary algorithms in two stag The first was a hyper-
heuristic approach to assign tasks to individu&didag squads in a way that was
able to cover the current set of customer ordersletail, a chromosome specified
a permutation of customer orders followed by twgussces of heuristic choices.
The first sequence of heuristics specified waysit each order into convenient
workloads, and the second sequence of heuristiesifiggl how to assign those
workloads to catching squads. The second stageawasvolutionary algorithm
that took the set of tasks produced from the §itage, and delivered a schedule of
lorry arrivals at each factory. For this real inolygproblem, a hyper-heuristics ap-
proach was central to a solution that worked sisfallg, whereas no previous
approach had met the required standards.

Before we move on to ‘super-heuristics’, we not thie have barely scratched
the surface of applications that have found hymrrristics to be a highly flexible
and successful approach, albeit at the time ofivgrithe application areas tend to
be not very diverse, with most either involvingnéitabling (e.g. Terashima-Marin
et al, 1999; Cowling et al, 2000; Burke et al, 20BRgin et al, 2006) or schedul-
ing (e.g. Hart & Ross, 1998; Cowling et al, 200&yob & Kendall, 2003). For a
much more comprehensive discussion of hyper-hésjseaders may refer again
to Burke et al (2003), as well as Ozcan et al (2008

Superheuristics: evolving and learning new and effgive algorithms

In an increasingly influential piece of researcbsRet al (2002) extended the no-
tion of hyper-heuristics to see whether new cowsitra algorithms could be
evolved which could deal effectively with large sef problem instances, rather
than one instance at a time. In what we term het®uger-heuristic’ approach,
Ross et al (2002; 2003) used a learning class#ystem called XCS (Wilson,
1998), and later an evolutionary algorithm, totwytearn an algorithm for solving



51

hard bin packing problems. The learning was donRass et al (2003) with an
evolutionary algorithm aiming to optimize the paeters for a fast constructive
bin packing algorithm, training on a set of testljems (i.e. a collection of differ-
ent problem instances was involved in the fithesgfion). When the learned al-
gorithm was then tested on a different set of pesblems, its performance was
found to be clearly competitive with state of thie leuman designed bin-packing
constructive algorithms.

In bin-packing (as with many algorithms, and as kave discussed with
scheduling), a typical constructive algorithm wbllild a solution one step at a
time, each step involving the use of some heurtstithoose the next item to pack
into a bin, and maybe another heuristic to chodsietwbin to place it in (or a sin-
gle heuristic covering the combined decision). dkerall goal is to pack a given
collection of items of different sizes into a séfigred capacity bins, using as few
bins as possible. In detail, the overall idea is&Ret al (2002) and their later work
(2003) is as follows. At each stage during sucbrstructive algorithm, we are in
a particular problem ‘state’, which is charactedizg/ the set of items left to pack,
and the current partial packing of items into bimsthis state, it is reasonable to
infer that some heuristics will be better than athéor deciding on the next
item/bin placement. So, Ross et al's approach wadefine a constructive algo-
rithm as a set of rules. Each rule in the set reteto a particular problem state,
and specified what heuristic to use when in thatestClearly there are far more
potential problem states than we can expect toepeesented by the left hand
sides of such rule; the method gets around thisawng the rules essentially refer
to points in the space of potential problem staées| the rule that ‘fires’ at any
particular time is the one that is closest to tlieent problem state.

The approach was first tested using 890 benchmaripacking problems in
Ross et al (2002), of which 667 were used to tlaénXCS learning classifier sys-
tem, and 223 for testing. The single resultingrdedrconstructive algorithm was
able to achieve optimal results on 78.1% of theblgmos in the training set, and
74.6% of the problems in the unseen test set. dtispared well with the best
single heuristic tested, which achieved optimali®go of the time. A notable find-
ing in that work was that when the training set wasfined to some of the harder
problems, the learned algorithm was able to sodxes out of ten of those prob-
lems to optimality (compared with zero out of tew the comparison human-
designed heuristics). This approach was improveRlass et al (2003), with many
interesting findings that showed highly competitresults for evolved algorithms
on hard unseen problems.

Finally we take a brief look at a different stgiesuper-heuristic approach ap-
plied to a different domain, specifically the wark Fukunaga (2008), which con-
cerns the satisfiability (SAT) problem. A SAT prebi instance is a conjunctive
normal form (CNF) expression, such as ‘(A or B ¢rabdd (B or not(C)) and (D or
E) ...", involving a number of logical variables (8, ...) which may either be
true or false, which in turn are the elements ntimber of clauses, conjoined into
the full statement. The problem is to discover \Wketor not an assignment of



52

truth values to each of the variables exists, whasults in each of the conjuncts,
and therefore the entire statement, being trueukaga’s work exploited a well-
known general local search framework for SAT, dees:

1. Generate an assignmehof truth values at Random (e.g.: A=T, B =F,
C=F ...)
2. For a given maximum number of iterations:
2.1 If A satisfies the formula, return YES
2.2 Choose a variabléwith aVariable Selection Heuristic
2.3 Chang@ by flipping the value of variablé
3.  Return UNKNOWN

The algorithm uses a ‘Variable Selection Heurististep 2.2, and this in turn was
the focus of Fukunaga'’s investigations. There axeal well known examples of
variable selection heuristics, which are humangtesi and typically used within
the above algorithm framework. One example is GS&&Iman et al, 1992),
which involves choosing the variable that, if flggh would cause the highest net
gain in satisfied clauses, breaking ties randomhother, HSAT (Gent & Walsh,
1993), works as GSAT, but breaks ties in favouagéd— so, the variable that was
last flipped longest ago in the overarching loedrsh process is the one chosen
to break the tie. Yet another, of several moreoisalled GWSAT) (Selman et
al, 1994), in which, with probabilitp, a random variable from a random unsatis-
fied clause is selected, else GSAT is used.
Fukunaga (2008) noticed that variable selectiarribics in the SAT lit-

eratire have certain common building blocks, inaigd

» Scoring variables via a gain metric

» Selecting a variable from a subset of variables

» Ranking variables, and choosing the best (or sebest)

» Consideration of a variable’s “age’

» Branching (ifx do A, else ddB)
An insightful comment that Fukunaga makes is timathe history of SAT heuris-
tics, developments typically come from finding nesys to combine these build-
ing blocks, rather than entirely novel heuristi€his begs a number of questions,
one of which is whether or not automated methody b able to find better
combinations of these building blocks. The lattemi fact exactly what Fukunaga
(2008) investigated, by using genetic programmimigh a function and terminal
set designed in such a way that novel heuristictddoe expressed in terms of the
above ingredients. As with the previous super-lstigriapproach we discussed,
the genetic programming experiments involved usirigrge set of different SAT
instances in the fitness function, and Fukunag®gP®valuates the results by
testing the evolved variable selection heuristitsinseen test sets.

On a collection of 1,000 unseen test instancekyfaga’s evolved vari-

able selection heuristics are vey competitive \hith state of the art variable se-
lection heuristics, GWSAT, WalkSAT and Novelty (Mitster et al, 1997). A



53

handful of the new heuristics found in this way dieaed the state of the at heu-
ristics in terms of success rate and speed. Aduntéther interesting finding was

that one of the heuristics in a random search pfession trees was almost as
good in terms of success rate, but usually fathen the human-designed state of
the art heuristics.

Some concluding notes

The super-heuristics concept has the potentialay g major role in optimisation
over the next few years. One way to view this depelent is as a thrust towards
more ‘general’ optimisation systems, which, for @levvariety of application ar-
eas, is a significant goal. In just one exampleliegfion areatimetabling there
has been very extensive research in recent yeamg &he lines of hyper-heuristics
ans upper-heuristics; this has followed a statenrerRoss et al (1997), which
was, “... all this naturally suggests a possibly \Wwaile direction for timetabling
research involving Genetic Algorithms. We suggdsdt ta Genetic Algorithm
might be better employed in searching for a gogardhm rather than searching
for a specific solution to a specific problem.” &grrement with Burke et al
(2003), we would emphasise that this suggestionbsamgeneralised to a much
wider range of problem areas than has currently lzelelressed with hyper- and
super-heuristic technologies.

5. Design: Art, Engineering, and Software

In this penultimate section, we consider the theh®esign’, and discuss three
quite contrasting examples. Design is an area péaal interest when we con-
sider what natural inspiration has to offer to gitemmers of various sorts. Today,
and for some considerable time still to come, tloelavis, to most intents and pur-
poses, filled with two kinds of artefact — thosesigaed by nature, and those de-
signed by human designers. The chief differencevden these two kinds of arte-
fact is the specific design method that was empuloykhe naturally designed
artefacts, as most scientists would agree, werigmed by an evolutionary proc-
ess — essentially an iterated process of randongeadration and test, in which
new designs, often failures, sometimes improvementserge via slight random
changes or randomised recombinations of old desWfith a ‘survival of the fit-
test’ principle built in to this strategy, the sasses are more often chosen than the
failures when it comes to being the foundation(fwrthe parents of) new designs.
Over time, this process continues to evolve nevigdeghat are successful in their



54

environment, and the examples we see today inaweeything from archaea to
artichokes, baobabs to braimscoli to elephants, and from wasps to the sophisti-
cated set of processes that lead to the construofizvasp nests. It is overwhelm-
ingly the case, however, that human-designed attefhave not adopted this
process. Humans prefer to design things in a ratiey, that prefers the adop-
tion of designs that have worked before for simpesblems, and rejects the no-
tion of any randomised exploration. Humans tenstick to a battery of accepted
design rules for the application in hand, and dgugpt for a step-by-step con-
structive approach, rather than generating and tisearding many different de-
signs at once.

Some criticisms of the human way of designing lsarsummed up in the
following statement: the over-reliance on estalgliskesign rules imposes severe
constraints on innovation, and probably limits #féectiveness of the resulting
designs. Meanwhile, nature’s method for design mel not be perfect — it does
indeed seem wasteful — however it certainly beashuman method for innova-
tion. We cannot yet design, with a rational appheacbiological flying machine
as efficient as a mosquito, or an energy transdocystem as efficient as photo-
synthesis. Meanwhile, it is notable that randonmsats an integral part of na-
ture’s method — undirected perturbations to designsl to be anathema to the
human approach, but are continually tried and destenature. Overall, it seems
abundantly clear that nature has a lot to teacbosit how to design things.

Perhaps unsurprisingly to most of our readerspeuertheless, we hope,
inspiringly, the documented experiences so fahédrena of natural computation
in design show us that novel, effective and unpgtented designs can be found by
applying nature’s method to design the artefactsheed to create. We discuss in
the next subsections one of the more prominentexciting examples in recent
years, which is NASA'’s use of evolutionary techréguo come up with entirely
novel antenna designs that have been deployedtelitsamissions. But before
that, we look at an example of the use of intevacéivolutionary computation in
artistic design, and we end this section with afdiook at how natural computa-
tion is making headway into the design of software.

5.1 Interactive Evolutionary Design of Batik Pattens

Evolutionary Art Systems (EASs) are increasinglpylar (Romero & Machado,
2008), commonly using evolutionary computation, allsu interactively (e.g.
Sims, 1991; Lutton, 2006), to generate aesthetigaaks. In some real world ap-
plications, focussing on particular niches in artl alesign, EASs have been de-
veloped specifically to facilitate a designer’sigitg. One recent such case, which
we describe here, is by Li et al (2009), in whichEAS tool is described for help-
ing designers of Batik patterns, a traditionaliartindonesia and southeast Asia.



55

Batik is a form of painting or writing on cottonoth, applied with the aid of a tool
called a cap (Kerlogue & Zanetini, 2004). Nowad&atik is used in fashion, fur-
nishing fabrics, and household accessories, as agepaintings and ornamenta-
tions in rooms and offices. However, fine qualigndmade Batik is very expen-
sive, so it potentially valuable to consider waystt would decrease Batik
designers’ effort and increase production of Batik.

Li et al (2009) investigated the potential for avSEbased Batik design system
with such goals in mind. In doing so, however, thag to consider the difficulties
commonly faced by EAS. First, the evolutionary gseis often quite limited by
the lack of an explicit correlation between genetyand phenotypes. Essentially,
the common ways in which aesthetic works tend teheoded by manipulable
genes (think of fractal patterns encoded in thecalway by mathematical formu-
lae) are far removed from the works themselveghat for example, when a hu-
man designer selects what he or she thinks are gacghts, they may find that
none of the promising features they saw in thergaractually appears in the next
generation. Another common difficulty is that tcess can be tiresome for a
human designer, spending hours sitting at a compatieg generated images. Li
et al's work attempted to develop a Batik desigstesy with innovations that ad-
dressed these issues. In particular, they deviseit@ble encoding for various Ba-
tik styles, and they devised an ‘out-breeding’ natism, that provided an addi-
tional way to generate new pattenrs that seemée tmn the aesthetic path being
pursued by the desitgner. These issues are elaldddrathe following subsections,
but the reader is referred to Li et al (2009) fonere complete account.

Encoding Batik Patterns

Li et al (2009) explored the space of geometrieaterns used in Batik, and clas-
sified them into categories. They found that thesrommmon features were repe-
tition, and certain geometric transformations sasltrotation, translation, and re-
flection. This led to a way to encode patterns anaypes, which specify a
number of non-redundant primitives along with tfanmations. The encoding is
therefore based directly on features of Batik patte most basic elements of
which include: triangle, polygon, circle, dot, stard flower. Each feature is gen-
erated from one gene in the genotype.

A genotype consists of a variable number of geaash of which represents
one feature in the phenotype. Every gene has twtvable attributes. The first
part is a specific basic pattern (e.g. a simpleasgntation of a flower petal, or a
circle or a triangle, etc.); the second part, ta@gformation, is a vector of matri-
ces, which each epresent a transformation of tliteseh A matrix is encoded by
six numbers, indicating a 2D linear transformatiogether with a translation
This representation is straightforward and easynémipulate. The resulting pat-
tern is made up of the union of the patterns indunethe different genes. Figure
12 shows some examples of single simple genedsretitoding, with their inter-



56

pretations above, while Figure 13 shows some petteroduced using the system,
contrasted with some human-designed similar Battkepns.

P

(1, 1, straight Line, rotate, 6) (2,1, straight Line, rotate, &) (2, 2, straight Line, rotate, 6)

Figure 12: Simple examples of Batik pattern geaas, their interpretations

Boosting the evolutionary process

Li et al (2009) use what they call an ‘out-breedingechanism to invigorate the
pool of patterns produced during the interactivelatonary process. In their
EAS, two separate populations of patterns are miaied, displayed to the de-
signer on separate panels. One population evotvélsei normal way, based on
treating the user’s feedback as the fitness functitowever the second popula-
tion evolves towards individuals that are maximaligsimilar to the what seem to
be the user’s preferences, hence injecting coraitlerdiversity in the displayed
patterns. Whenever the first population seems tstagnatint, individuals in the
second population will be introduced to the firzintributing diverse input to the
gene pool.

The crux of this mechanism is the idea of ‘diskinty’, which requires a
way to compare patterns. Li et al (2009) prefet@dihvestigate a measure that
was related to the visual difference between padteexpecting that a method
based only on genotypic difference would not bésfaitory. They use a metric
based on singular value decomposition (SVD)(Wan@let2000). In their ap-
proach, a patterA is interpreted as a matrix, and they represent eatiern in
terms of the singular values arising from the SMApwhich in turn are likely to
capture salient features of the visual perceptioA. similarity metric between
two patterns is then defined on the basis of a atised comparison of their vec-
tors of singular values. The outbreeding procesn tiperates as follows: In each
generation, while one population continues to negate patterns according to the
normal process, guided by the user’s evaluatidres,outbreeding population re-
generates in a way guided by using dissimilarityhesfitnes measure, measured
in terms of dissimilarity from the pattern that theer currently perceives as best.



57

Li et al (2009) report that the out-breeding medésmnis very effective in aiding
the search for innovatiave patterns, and find thet'outbred’ populations tend to
be more elaborate and attractive than the ‘maipugation!

Fig 13 Above: some real-world Batik patterns. bel&imilar individuals gen-
erated by the mathematical model, such as appeér emitial population of the
Batik.interactive evolutionary system.

Meanwhile, concening the ‘standard’ interactivelpleed population, we note
that the generation of the initial population, d@hd subsequent evolution based on
user-supplied fitnesses, relies on a collectioypfcal genetic operators as fol-
lows. The initial population is informed by usingreathematical model of Batik
pattern space on based Li et al's preliminary attarésation. The model is used to
generate collections of genes, and then mutatienadgprs are applied to these: ei-
ther Gaussian mutation (in which each point inlthsic pattern element of each
gene is perturbed by the same random amount) yler stutation (in which the
elements of a gene reflecting line styles are peed, for example from
strai ght-Ilinetocurve). During the subsequent interactive evolution proc



58

ess, new patterns are produced by crossover andtiotutof patterns deemed
good by the user. Standard types crossover andiorute used for this in Li et

al’s work so far, for example including linear camédttion and gene-swap based
crossover. Also, as explained fully in Li et al Q®), their system has other fea-
tures that are meant to aid the user’s design pspceich as the ability to retrieve
patterns that were produced earlier in the evahutio

Empirical Notes

Li et al (2009) found that some of the traditioBaitik designs could be produced
by the mathematical model that underpins the gésieraof the initial population.
In Figure 13, the top three patterns are real-w&ddik, while the three under-
neath were presented in initial populations.

Li et al (2009) reports on five experiments usihgitt system, aimed partly at
evaluating the outbreeding technique; each expatima the process twice, with
and without outbreeding (but starting from the samnigal populations). They
measured, in particular, the time investment ef tker before a satisfactory de-
sign was achieved. They found that, with the owtiieg mechanism in place, the
design process took on average only 54% of the taken using the interactive
system without outbreeding. Further, the time vaititbreeding was roughly 17%
of the time it tends to take to design a new Bp#kern by hand. Further experi-
ments confirmed in other ways that the outbreedighanism was effective in
producing patterns, throughout the process, tmatete to be evaluated well by us-
ers. Figure 14 shows the initial population useddlb of these experiments, and
Figure 15 shows some final-population designs $adisfied the users (produced
with the out-breeding mexhanism in opeation), cote¢kinto tesselations.



59

Fig. 14 initial populations used in Li et al's exipgents.

Fig 15; tesselations of final-population designmggshe Batik pattern interac-
tive evolutionary system (with the outbreeding nadbm).

Final points and notes

The interactive Batik design system described dsdudsed here is a nice exam-
ple of how interactive evolutionary computatiorbisginning to be used in an in-
creasing number of applications that involve crégti Experience with this sys-



60

tem so far shows how it can both speed up and anatg the process of generat-
ing interesting new patterns in the Batik ‘domai@he of the keys to success in
such enterprises is the wise design of the encodind we have seen a good ex-
ample of that in this case. Li et al (2009), ashaee seen, also showed an innova-
tive approach to dealing with some of the evergmeproblems (and hence, re-
search issues) in interactive evolution. The owthirey mechanism was able to
enhance diversity in the process, at the samedsmeducing the time (and hence
fatigue) of human users.

5.2 Novel Antennae for Satellites: Discarding the ®e Book

As elaborated further in Hornby et al (2006), cotrpractice in antenna design
almost invariably involves designing and optimizitihgm by hand, and this ap-
proach is very limited as a way to develop new betder antenna designs. It re-
quires significant time and expertise from humapegts in the domain. An ongo-
ing alternative in antenna design (in common withircreasing variety of such
specialist areas), is to investigate evolutiondgpthms for this purpose. This
has been happening since the early 1990s, witled@sang success and take-up as
we have seen developments in processing poweraaedimprovements in the
quality of software simulations of antenna perfonce To date, many types of
antenna have been investigated by evolutionarygdespproaches. A particularly
interesting and useful aspect of this approaclhesapportunity to to evolve an-
tenna designs specifically for performance in dipalar environment, so that the
fitness function takes into account the effectsstofictures surrounding the an-
tenna’s intended position. This consideration ef thmediate environment is ex-
tremely difficult for human expert antenna designertake into account.

In this section, we summarise work reported in Hgret al (2006) and
other publications from that group, which describe experience and results of
using evolutionary algorithms to evolve antennassfiacecraft associated with a
number of NASA missions, in particular two antenrdesigned for NASA’s
Space Technology 5 (ST5) mission, and an antenma Toacking and Data Relay
Satellite (TDRS) for a mission due to operate bera2010.

Antennas for NASA’s Space Technology 5 Mission

NASA’s Space Technology 5 (ST5) mission had thel gbdaunching multiple
miniature spacecraft to test various innovativecems for application in future
space missions. Three miniaturized satellites werelved in ST5, called micro-
sats, designed to measure the effects of solavitgctn the Earth’s magneto-
sphere. These micro-sats were approximately halétre across and half a metre
high, weighing around 25 kilos when fully fuelleaihd each had two antennas,
centered on the top and bottom. They were origirddisigned to operate in a geo-



61

synchronous orbit at approximately 35,000 km abBaeth, and had a stringent
set of requirements for the communication antenbegails of the specific re-
quirements are Hornby et al (2006), and we needdisouss them here, but (in
common with similar antenna design tasks), thegairements were in terms of
constraints on the gain patterns, voltage standiage ratios, and input imped-
ances, at both the transmot and receive frequeral&sthe mass of each antenna
had to be below 165g, and the shape had to fitinvethcylinder with height and
diameter both below 16cm.

To meet the initial design requirements in thistanse, the team decided to
constrain their search to a monopole wire antenita ¥our identical arms,
equally spaced around the vertical axis. An evohdry algorithm was therefore
set to work to evolve the shape of a single armiclhvim turn defined the entire
antenna. Importantly, the encoding used by the teasione that allowed almost
arbitrary designs for the arm, with no referencéhimlimited collection of known
standard designs. Essentially it was a geneticrproming style approach, in
which each node in a tree was an antenna-construoperator. Interpreting the
tree top down from the root node, and given arainiteed-wire’ of a given small
length and orientation, the operators and leavetheftree effectively specified
three-dimensional movements in the style of ‘tugtaphics’, adding sections of
wire of specific lengths and orientations to therent partial design.

Having decoded a tree into an antenna design,rtemaa was simulated with
means of a sophisticated simulation platform, whigded estimated perform-
ance characteristics which then had to be autoaibtievaluated against the de-
sign requirements. In common with the design regoents themselves, readers
are referred to Hornby et al (2006) for detailshef fitness function, but suffice it
to say that the requirements themselves and thelaion results are both curves
involving performance characteristics at differepatial locations and frequen-
cies, and the fitness function involved such thiagsestimates of distances be-
tween desired and actual curves, weighted in spew#ys according to the im-
portance of different requirements.

It so happened that the requirements for the SiESiam changed while these
initial antennas were being designed. New misséguirements effectively forced
a single-arm antenna design, and this led to ted teeredesign the fitess function
for the antenna design process. In the operatimgament context of Hornby et
al's work, it is of particular interest and imparta to note that an extremely ef-
fective antenna design was produced for the ingi#lof requirements, in a short
time when compared with the human expert designga® Moreover, with mis-
sion requirements altered partway through the @die evolutionary algorithm
approach needed only relatively minor modificateord was still able to quickly
produce an effective antenna for the new requirésnen

To meet the initial mission requirements, the le&tlved antenna design that
emerged, ‘ST5-3-10' is shown in figurel6 on the.|&his antenna met the initial
mission requirements, and was indeed all set toslee on the mission itself, until
the mission’s orbit (and hence many other aspeas)revised. The new evolved



62

best antenna following the new requirements wasotie shown on the right in
figure 16, so-called ‘ST5-33-142-7'. The latter emta design, which was deliv-
ered for prototype fabrication less than a montarahe changes to the ST5 mis-
sion requirements, was found fully compliant wigresifications when the proto-
type was tested, and on March 22nd 2006 the STSionisvas successfully
launched into space using evolved antenna ST5-2371#4ornby et al (2006) re-
port that this was the first computer-evolved angeto be deployed for any appli-
cation and the first evolved hardware in space.née that this is clearly valid, if
we confine ourselves to hardware produced, by wieatmeans, in the local Solar
system; but we don’t know about elsewhere.

Hornby et al (2006) note that the evolved anteramdnumber of advantages
over human-designed alternatives. These advantagkesie reduced power con-
sumption, fabrication time, and complexity, and ioyed performance. The ST5
mission managers had actually hired a contractg@réoluce antenna designs in
addition to awaiting the findings of the evolutiopapproach. The contractor
used conventional design practices, and came upamiariant of one of the many
standard designs. When this design was comparsigniaation with the evolved
design, it was found that if an ST5 craft used ®wolved antennas (recall that
each craft had two antennas), efficiency would B& 9mproved over the situa-
tion where the craft instead used two of the camtradesigned antennas. Among
other explication of the various benefits in Horretyal (2006), we note that the
evolved antenna required approximately three pensonths to design and fabri-
cate, versus approximately five months for the huithbesigned one.

Figure 16. Photographs, reproduced with permissiadnprototype fabricatede-
volved antennas. Left: the best obtained antenndh initial ST5 mission re-
quirements, ST5-3-10; right: the best obtainedofelhg the revised specifica-
tions, ST5-33-142-7.



63

An Antenna for NASA;s TDRS-C Communications satellie

Later in 2006, the same team evolved an ‘S-bandggharray’ antenna element
design for NASA’'s TDRS-C communications satellpest of a mission that had

been scheduled for launch sometime between 201@@2@ This time the evolu-

tionary algorithm was combined with a hillclimbiredgorithm, and the antenna
design was somewhat more constrained towards destustyle; nevertheless the
resulting design was simpler than the potential peting human designed anten-
nas, with consequently reducing testing and integraosts.

As Hornby et al (2006) reports, the TDRS-C missiol carry several anten-
nas, including among them a 46 element phased ant@yna. Readers unfamiliar
with the terminology may see Figure 17, from whichecomes clear what the in-
diidual elements are in the phased array. The demigl performance specifica-
tions for this antenna involved electromagneticf@@nance issues, as was the
case for the ST5 missions, but also certain conssran the elements and their
spacing.

A simpler encoding was used by the team for thsegc#n which an antenna
was represented as a fixed length list of real rembAntenna parameters were
determined from these simple ‘genes’ in a fairhaigthtforward way, in which the
majority of successive pairs of genes referrecheodistance to the next element
along the antenna’s axis, followed by the sizehefriext element.

In a similar process used for the ST5 mission ar#enthe team set up around
150 separate experiments that each ran an evamyialgorithm for a total of
50,000 evaluations (antenna simulations) each -séiparate evolutionary algo-
rithms s each represented a random point in pasarapace, with different popu-
lation sizes, mutation rates, and so forth. The& &etennas from each of these 150
runs was then subject, in a second stage to fuirt@ovement via a hillclimbing
algorithm for 100,000 evaluations. Finally, the tbethese were subject to fur-
ther hillclimbing.

At the end of this process, most of the evolvedramas were very close to
meeting the rather stringent mission specificati@msl one of the evolved anten-
nas exceeded the specifications. That one, shovigre 17, was further ana-
lysed by accurate electromagnetics software (WIPLeBsion 5.2), and subjected
to some fine tuning via another evolutionary altfori, and finally a resulting an-
tenna design was fabricated and tested. The diesin, shown in Figure 17, ex-
ceeds the design specifications, and it remain® tipe mission leaders whether it
is deployed in the TDRS-C mission.



64

“-
-
>
q*:-\-r.
<
O
Ey

Figure 17. Best evolved TDRS-C antenna

Concluding points

In this section we have described the work of Hgrabal (2006) in evolving an-
tennas for two NASA missions. For both the ST5 foisand the TDRS-C mis-
sions it took approximately three months to sebupevolutionary algorithms and
produce the initial evolved antenna designs. Faligathe revision in ST5 re-
quirements, it took roughly one month for the tetomevolve antenna ST5-
33.142.7, and the team are indeed very confideorr(by et al, 2006) that a
change in requirements for the TDRS-C mission wflult in a similarly fast re-
design of an antenna meeting the new requirements.

As well as benefits in relative speed and easeesigd, the evolutionary algo-
rithm approach to designing antennas leads to m#ver advantages over manual
design. One such advantage is the potential fdiopeance characteristics that
are simply unachievable with conventional desigiest Antenna design is one of
several areas in which there is potential for utenggl areas of design space to be
examined. These are areas of design space thatnhexparts tend to steer away
from, since the current state of theory and undadihg is quite limited to the
properties of a range of conventional designs. Eimhary algorithms are far less



65

wary of such ill-understood areas of design space, by finding exemplars in
such areas that have outstanding performance @sithe ST5 designs discussed
in this section), may lead to more systematic stofdguch regions of the design
space, leading to new design principles and neanséic insights.

5.3 Evolution in Software Design

As noted in Arcuri & Yao (2008), software testirgyused to find bugs in com-
puter programs (Myers, 1979). Even though succkgadting is no guarantee that
the software is bug-free, testing increases conéiden the software’s reliability,
and is an integral and extremely important partmaidern software engineering.
However, testing is very expensive, time consunang tedious, amounting to
around half the total cost of software developn{Beizer, 1990). This investment
in testing is not begrudged, since releasing bddem software can be immensely
more costly in the long run. In fact, it is oftergued that far more testing should
be done than is usually the case — in the USAgkample, it is estimated that
around $20 billion per year could be saved if betésting was done (Tassey,
2002). The need for cheaper and faster testinigés.c

In this section we look at recent work by ArcuriY&ao (2008), which is
part of an area of research called search-basédasefengineering. In this par-
ticular thread, the idea is to investigate the afsevolutionary computation to im-
prove aspects of the testing process. In particdlezuri & Yao (2008) are con-
cerned with unit tests (Ellims et al, 2006). Tretates to writing small pieces of
software code that test as many parts of the graggossible. For example, the
test code might call, with specific inputs, a jamathod that adds two integers; the
returned value is then checked against the expeetiee. If there is a difference,
we can be sure that there is something wrong wlighcode. However, since test-
ing all possible inputs of a method is usually &#ible, a suitable subset of tests
needs to be chosen. Writing code for such ‘unistesquires some way to decide
on a good collection of specific input cases, and very resource-hungry exer-
cise.

Automated ways to generate unit tests are cledrigterest to the soft-
ware design process, and this is the topic of Ai&uyao’s work (2008). Various
approaches have been studied to automatically genamit tests (McMinn,
2004), but there is no known way to generate ammaptset of unit tests for any
given program. Also, comparatively little has betome in this area for object-
oriented (OO) software. In this section, we descicuri & Yao's recent work
(2008) which had a focus is on a particular typed@ software constructon-
tainers These are data structures (like arrays, liststove, trees, etc.) designed to
store arbitrary types of data. What usually digtisges a container class is the
computational cost of operations like insertionletdlen and retrieval of data ob-
jects. They are used in almost all OO softwarethsdr reliability in commercial
code is paramount.



66

Arcuri & Yao (2007) presented a framework for austicelly generating
unit tests for container classes, in the contextitfe box testing. They analysed a
number of different search algorithms, and companedn with more traditional
techniques. They used a search space reductiorexipitits the characteristics
ofthe containers. Without this reduction, the ussearch algorithms would have
required too much computational time.

About testing java containers

In each of the many kinds of java containers (aragctors, lists, trees, and so
forth), we usually expect find methods such asrinsemove and find. The im-
plementations (and hence computational expenséjesé methods can varymuch
between containers; also, the behaviour of suclhadstis often a function of the
container’'s current contents. This situation coesitlly complicates the design of
unit tests (McMinn & Holcombe, 2003; 2005) — justchuse we find that a
method yields the correct result with certain irgpubat does not mean it will al-
ways give the correct result with those inputshpps depending on the current
contents of the container.

The approach to testing containers therefore edgliconsiders the se-
qguences§, of function calls. During a testing operation such a container, the
container is referred to here as a ‘Container uiiést’ (CuT), and a function call
(FC) can be seen as a triple:

<obj ect reference; function nanme; input list>
This simply refers to calling the given functiondthod) of the given object (con-
tainer) with the given list of inputs. In Arcuri &ao’s work, the CuT is subjected
to a single sequen& of such FCs, rather than a different sequencedoh of the
function’s branches. Natuallu, in the unit testgjaode, each FC is embedded in a
different try/catch block, so that the paths tiwbw exceptions do not forbid the
execution of the subsequent FCs in the sequence.

The goal in testing is to achieve a maximal ledelcoverage’; broadly
speaking, this refers to the amount of code th&tsged. All software is replete,
for example, with case statements and “if X theel¥e ..” style branches, and,
without suitable design of test cases, many bramodfieghe code may end up not
being followed during the testing process. Givesudable coveage-related crite-
rion (there are several), it is then importantito ér the short sequence of func-
tion calls while achieving excellent coverage. Aircu Yao (2008) usedranch
coverageas their coverage criterion, although their apphoia easily extensible
to other coverage criteria.

In Arcuri & Yao’s formulation, they consider a coage function co\j)
which, in relation to a given CuT, returns the nembf code branches covered
when tested with the sequence of functional call&Vhere len§) is simply the
number of function calls in the sequence, Arcur¥&o attempt to optimise both
cov(S) and leng), preferring a shorter sequence in the case thatdberage of
two sequences is the same. To some extent itas tat this is a multi-objective
problem (see Deb (2001), and sections 3.1 and Bayever Arcuri & Yao indi-



67

cate a definite order of preference in this don{abverage more important than
length), which influences their decision to tretags a single objective problem.
They therefore attempted to find sequences thamgged covg) + 1/(1+leng)),
although with various modifications and adaptatialesailed in Arcuri & Yao
(2008).

Smoothing the test landscape

Arcuri & Yao (2008) detail several complex factonsolved in the enterprise of
treating unit testing as an application for evao#ry computation, along with
their solutions to these issues. Here we will atiscuss one such issue, of par-
ticular pertinence to the ‘engineering’ of problewisen considering artificial evo-
lution of solutions. This relates to helping thelketionary process by making the
fithess assessments more informative. The probhetiis case that the number of
branches covered (i.e. the number returned byS)pwfoes not give any indica-
tion of how close the sequenges at being able to cover additional branches. Put
another way, two sequencgsandS may have the same coverage value, but one
may be much ‘nearer’ than other (i.e. requiring @tation to just one of its FCs)
to a sequence that has higher coverage.

In many branch statements, in which the predicategssing the branch
are quite simple, random sequences of FCs will figles difficulty finding inputs
that force coverage of all its branches (this iy wdndom search, as we see later,
tends to achieve good coverage). But when the gatalis more complex, it is
typically the case that only a very small portidntlee space of potential inputs
will lead to certain branches being covered. seartikely to fail.

One approach to this issue is to considerBranch DistancegBD) (Ko-
rel, 1990). Any particular branch will be enteréa igiven statement is true (such
as 0.2x<0.3); the BD is a real number that tells us hontlie relevant predicate
is from being true (in the latter case, BD will losv if x=0.4 and high ifx=10).
Making use of such information in the coverage metrould help the evolution-
ary search process, by helping to distinguish betwpairs of sequences that
would otherwise have the same simple coverage vddugnch Distance is the
topic of much research effort in Software Testiagy( Baresel et al, 2002; Har-
man et al, 2002; McMinn & Holcombe, 2004). Thiseash tends to consider ap-
proaches in which different test sequences focusliffiarent branches, without
considering the issues involved with the precisgusacing of function calls af-
fecting the results. A difference in Arcuri & Yaoapproach is the attempt to
evolve a single test sequence that covers all besc

The technique they adopt is to modify the &)vdefined earlier, incor-
porating within it a simple measure of branch dis&for any uncovered branch,
which takes into account how many times the prediaasociated with a branch is
evaluated. For example, if only one FC in the sageenvokes a predicate with
two branches, then only one branch will be covetéawever if in another se-
guence there are two FCs that test this predibatd, invoking the same branch,
then it can be said that this second sequenceogerckto covering the second



68

branch, since (if coverage of this other brancpassible at all) this requires only
mutation of the input list of one of the FCs in thequence. There are various
ways in which the coverage metric could be modifietbke branch distance into
account, and it turned out important to use differariations in different circum-
stances, as is mentioned later, and of coursestisdumore fully in Arcuri & Yao.

Evaluating natural computation for this task

Arcuri & Yao (2008) tested five approaches: randsgarch, (RS), hill climbing
(HC), simulated annealing (SA), a genetic algorit(@A) and a memetic algo-
rithms (MA). RS is a natural baseline used to usi@derd the effectiveness of other
presumably more sophisticated algorithms, and dftering surprisingy good re-
sults. In the current context, we can expect R§ive good results in terms of
coverage. The RS worked simply by repeatedly géingraandom sequences,
evaluating them, and returning the best at the anithe process; for pragmatic
reasons it was necessary to specifiy a maximunthefog each sequence.

For the other methods, it was necessary to desighbourhood (and ge-
netic) operators that would operate on sequencpsogiuce variants. In all cases,
the encoding of a sequence of FCs was entirelygbtfarward. The ‘chromo-
some’ is simply an explicit (variable length) segce of FCs, each a triple as des-
cibed above. For neighbourhood (mutation) operattire natural choice was
made to use operators of the following type:

* Removing an FC from a sequence
* Inserting a new FC into the sequence, in a randasitipn.
* Modifying the parameters of a randomly chosen F& sequence.

In the genetic algorithm, single point crossoveswatso used, in which a child se-
quence was generated by using the #itgrandomly chosen) FCs in one parent,
and completing the child with the FCs from positkbnl onwards in the second

parent. The memetic algorithm was a simple hybfithe genetic algorithm and

hillclimbing, which repeatedly ran hillclimbing ogach new individual produced

by the genetic algorithm until a local optimum weaached. Although the RS, HC,

GA and MC were fairly standard, In their simulatathealing (SA) implementa-

tion, various modifications and sophistications evercluded to control the accep-
tance of new mutants during the search, in atteémftalance the coverage and
length considerations. These details, and of cootfser parameteric details of all

of the algorithms, are explained in Arcuri & Ya®(B).



69

Table 6: Some results from Arcuri & Yao (2008), wig coverage and lengths obtained
when evolving sequences of function calls for Segparate containers, using five algo-
rithms, random search (RS), hill-climbing (HC), siated annealing (SA), genetic algo-
rithm (GA) and memetic algorithm (MA).

Container | Algorithm| Mean Variance in | Mean Variance in
Coverage coverage length length
Vector RS 85.21 1.52 56.99 7.73
HC 100.00 0.00 47.67 1.05
SA 99.99 0.01 45.76 1.11
GA 99.99 0.01 46.87 1.63
MA 100.00 0.00 47.89 2.64
LinkedList | RS 69.96 1.82 55.27 14.00
HC 84.00 0.00 38.48 10.27
SA 82.47 2.25 33.60 5.29
GA 83.83 0.26 36.66 3.64
MA 84.00 0.00 36.43 3.58
Hashtable | RS 92.92 1.17 54.45 25.97
HC 106.00 0.00 35.25 0.19
SA 105.84 0.74 34.98 0.77
GA 101.14 6.50 31.10 6.31
MA 106.00 0.00 35.01 0.01
TreeMap | RS 151.94 5.85 54.11 26.87
HC 188.76 0.71 51.23 10.08
SA 184.19 5.75 40.68 5.88
GA 185.03 3.46 42.14 8.44
MA 188.86 0.65 50.55 10.31

Arcuri & Yao (2008) performed tests on separateaj@ontainers that imple-
mented Vector, Stack, LinkedList, Hashtable andceMap respectively, from the
Java API 1.4, package java.util, and BinTree anabBiialHeap from the exam-
ples in Visser et al (2006). Here we describe @nbelection of their results, fo-
cussing on the four cases which involved the ldrgasber of public functions
under test (PuT). These were: Vector (34 PuT), éthkist (20 PuT), Hashtable
(18 PuT) and TreeMap (17 PuT), respectively witi9,0708, 1060 and 1636
lines of code, and achievable coverage of 100188,and 191 branches. The lat-
ter figures for achievable coverage are based @urA& Yao's experience of
around a year's worth of experimentation, with exsjon of the container code
confirming that non-covered branches seem unreéehab

Each of the five algorithms were tested, to atliofi 100,000 sequence
evaluations per trial, using 100 trials per aldoritand container pair; a selection
of Arcuri & Yao’s results results are summarisedTlable 6. When we consider
the coverage results in the context of the highebtevable coverage mentioned
above, it turns out that only TreeMap presents atiqularly difficult coverage
task. The MA achieves the best mean coverage resulteeMap, and indeed the
MA is reported by Arcuri & Yao (2008) as statistlgasuperior to the other algo-



70

rithms in all cases except Vector (based on a Mafmitney U test). In all con-
tainer cases except Vector (including the othepsnted in Arcuri & Yao (2008)) ,
the MA shows either the best mean coverage, draites first position for cover-
age while having a better mean length. Not sumglgi random search tends to
have worse performance than the other algorithittsowegh it can often achieve
reasonable coverage. When coverage from RS is gmodgver, the length of the
sequence of FCs tends to be poor; this is readidierstood giventh enature of the
‘difficult’ branches in testing, as also indicatabove. Finally it should be pointed
out that Arcuri & Yao’s system was not able to gate inputs that could cover all
branches in the CuT,; for example, for pragmaticsoes, branches in private
methods were not considered, while around 10% efpiliblic methods were not
directly callable.

On related and similar work

Arcuri & Yao (2008) point out the difficulties inomparing their approach with
traditional systems in software testing, includthg fact that there is no common
benchmark scenario, and no reasonable way to agplihe ways that other au-
thors instrumented the software to be tested. Hewéwey point out that tradi-
tional techniques (e.g. King, 1976; Doong & Frarid94; Buy et al, 2000; Mari-
nov et al, 2001; Boyapati et al, 2002; Visser et28l04; Xie et al, 2004; 2005)
tend to have considerable challenges with scatgbdind invariably rely on con-
siderable prior effort, such as the need to geeeafgebraic specifications or other
formal representations of the functions to be tedfas is particularly tricky when
predicates are highly nonlinear, involve loops,Hinaar data types, and so forth.
Arcuri & Yao's evolutionary computation based apurb, however, needs no
such prior specification effort, and is applicatbeany container. Meanwhile, al-
though there are many difficulties with direct caripon with results from tradi-
tional techniques reported in the literature, thel@ionary computing approach,
especially the memetic algorithm, seems to haveifgignt benefits in terms of
speed. However much further work is warranted is field, including hybrids of
natural computation and traditional approaches.

As noted by Arcuri & Yao, the use of natural congtign in software
testing has been gaining a research following aeme years. Other examples in-
clude Tonella (2004) who used evolutionary alganishfor generating unit tests of
Java programs, while Wappler andWegener (2006) sseagly typed genetic
programming (STGP) also for testing Java progré®egsing (2006) also investi-
gated STGP for a similar purpose, while Liu e{2005) used a hybrid approach,
involving ant colony optimisation (see the Swarrteliigence chapter in this vol-
ume) to optimise the sequence of function callgl armulti-agent evolutionary
algorithm to optimise the input parameters of thhsection calls. Meanwhile,
Arcuri & Yao's research described in this secti@yén with presenting a new en-
coding and search operators and a dynamic seasste geduction method for
testing OO containers (Arcuri & Yao, 2007), alsstitey Estimation of Distribu-
tion Algorithms on this problem (Sagarna et al, 200



71

Summary thoughts

In this section we have seen an example of howugieolary computation is be-
ginning to be used in software engineering. Thekweoe focussed on showed a
comparison with a selection of other methods, asd discussed comparisons
with standard techniques in the software engingeindustry, and found advan-
tages for the evolutionary computation approachdth scenarios. The empirical
tests by Arcuri & Yao (2008) showed that their Meim@lgorithm usually per-
forms better than the other algorithms tried. Hogrexthere remains clear chal-
lenges for improvement (e.g. the performance onTiieeMap container was not
completely satisfactory).

Arcuri & Yao conclude, based on their results & as the neighbouring
literature, that, in testing OO software, naturgpired algorithms seem to be bet-
ter than the standard techniques based on symiaddicution and state matching,
since they seem able to solve more complex tetlgmes in less time. Arcuri &
Yao's work also included the unusual approach yihty to cover every branch at
the same time with a single sequence. This hasoybe compared to the tradi-
tional approach of testing each branch separately.

6 Concluding Notes

We have discussedselectionof application areas in which natural computation
shows its value in real-world enterprises of vasisorts. Our selection has been
quite eclectic. Other authors will have chosenftedint set; at another time, the
same authors will have chosen a different collectithe main message we mean
to convey by such statements is that, for the pepof demonstrating the signifi-
cant impact and potential of natural computatiomiiactice, there is certainly no
shortage of documented examples that could betsdled/e have presented just
ten applications, ranging from specific problemspecific domains, and ranging
from cases familiar to the authors, to highlight®wn well in the general natural
computation community. However all of them share,hepe, the property of dis-
playing (each in their own way) a clear indicatmfnthe proven promise or great
potential for the impact of nature-inspired compiotain high-profile and impor-
tant real-world applications. Similarly, we hopeatlihese applications share the
property of being inspiring to both students anacfitioners; many were selected
on the basis of proving particularly popular witbr students, in the context of
getting them interested in the study of natural potation.

When designing an article such as this, the fireblem one faces is that
natural computation is almost too successful irciiza. You may ask, for exam-
ple, why we do not mention more from the thousasfdsuccessful real-world ap-
plications of neural computation, or fuzzy systerdééll, first of all, we have in-



72

deed just mentioned them. But second of all, th&tipming of this article in the

‘Broader Perspective’ volume suggests a focus ennttwel and unusual; on the
less generally known, and on areas whose potest@éar, yet only beginning to
be realized in practice.

Naturally, therefore, the centre of gravity in thidicle has turned out to be
evolutionary computation. Sandwiched between theerfemmiliar, tried and tested
topics of neural and fuzzy systems, and the seeenalrging areas of natural com-
putation that are currently less “on the map’ wiiplication studies, evolutionary
computation is a highly flexible child of naturabroputation that excels in dis-
playing the promise for this field. But, in passivge have seen, in Blondie24,
how different areas of nature-inspired computatiolaborate to remarkable ef-
fect. We have also seen, in the aircraft maneuwgtysand in our discussions of
super-heuristics, how learning classifier systemthemselves inspired by the
adaptive behaviour of intelligent organisms — cibutle towards natural comput-
ing’'s expanding gallery of successes. Meanwhilagiothapters in this volume
cover some of the successes of swarm intelligesicaylated annealing, artificial
immune systems, and more.

The real-world value of some of the more establishatural computing tech-
nigues has been proven to be unquestionably imménggeworth pointing out
that this was never anticipated in the ‘early ddgs’'each individual technique. In
the case of neural computation, for example, Minskgl Papert's analysis of the
capabilities of two-layer networks led (if not derately) to much skepticism and
delay in the exploration and take-up of neural meks for pattern recognition. In
evolutionary computation’s earliest days, the atgars were usually considered
as intellectual curiousities, with the occasionarpising application studies con-
sidered as one-offs. There seems to be a lesserfdrethe promise and potential
of the several less mature and emerging naturapating ideas — those discussed
in this volume, as well as others. In anticipatiae, wait and see.

References

Allen, F. & Karjalainen, R. (1999). Using genetig@rithms to find technical trading rules,
Journal of Financial Economi¢$1:245-271.

Angeline, P. J. (1996). Genetic Programming’s Guargd EvolutionAdvances in Genetic
Programming Vol. 2, editor, P. J. Angeline and K. Kinnear,n@aidge, MA: MIT
Press, pp. 89-110.

A. Arcuri and X. Yao (2007) A memetic algorithmrftest data generation of object-
oriented software, in: IEEE Congress on Evolutign@omputation (CEC), 2007, pp.
2048-2055.

A. Arcuri, X. Yao (2008) Search based softwareimgsbf object-oriented containerk)-
formation Science$78: 3075-3095

M. Ayob and G. KendallA Monte Carlo Hyper-Heuristic to Optimise ComponEtdce-
ment Sequencing for Multi Head Placement MachineProceedings of the Int. Conf.
on Intelligent Technologies, 2003, 132-141.



73

Banzhaf, W., Nordin, P., Keller, R. E. & Francofe,D. (1998).Genetic Programming
An Introduction On the Automatic Evolution of Computer Prograamsl Its Applica-
tions, San Francisco: Morgan Kaufmann

A. Baresel, H. Sthamer, M. Schmidt (2002) Fitnasscfion design to improve evolution-
ary structural testing, in: Genetic and Evolutign@omputation Conference (GECCO),
pp. 1329-1336.

Becker, L.A. & Seshadri, M. (2003a). Comprehengipénd Overfitting Avoidance in Ge-
netic Programming for Technical Trading Rules, \ster Polytechnic Institute, Com-
puter Science Technical Report WPI-CS-TR-03-09.

Becker, L.A. & Seshadri, M. (2003a). Cooperativee@uution of Technical Trading
Rules, Worcester Polytechnic Institute, Computeer8e Technical Report WPI-CS-
TR-03-15.

Becker, L.A. & Seshadri, M. (2003c). GP-evolvedhteical trading rules can outperform
buy and hold, IrProc. 6th Int'l Conf. on Computational Intelligeneed Natural Com-
puting North Carolina USA, September 26-30 2003.

B. Beizer (1990) Software Testing Techniques, Vasthind Rheinhold, New York.

B. Bilgin, E. Ozcan, E.E. Korkmaz (2008 Experimental Study on Hyper-Heuristics and
Final Exam Schedulingln Proceedings of the 2006 International Confeeeon the
Practice and Theory of Automated Timetabling, 20#3—140

G. E. P. Box (1957), “Evolutionary operation: A tmedl for increasing industrial produc-
tivity,” Appl. Stat, vol. 6, pp. 81-101,

G. Box, W. Hunter, and J. Hunter (2005), StatistarsExperimenters: Design, Innovation,
and Discovery, 2nd ed. New York: Wiley, 2005.

C. Boyapati, S. Khurshid, D. Marinov, Korat (200&utomated testing based on java
predicates, in: Proceedings of the Internationahi@ysium on Software Testing and
Analysis (ISSTA).

Brabazon, A. & O'Neill, M. (2005). Biologically Ipsred Algorithms for Financial Model-
ling (Natural Computing Series), New York: Springer

J. Branke and K. Deb (2005), “Integrating user @mefices into evolutionary multi-
objective optimization,” in Knowledge Incorporatian Evolutionary Computation.
New York: Springer, pp. 461-477.

D. Brockhoff and E. Zitzler (2006) “Are all objeetis necessary? On dimensionality reduc-
tion in evolutionary multiobjective optimizationifi Parallel Problem Solving from Na-
ture—PPSN IXvol. 4193,Lecture Notes in Computer Scien¢éew York: Springer,
2006, pp.533-542.

E.K. Burke, G. Kendall, J. Newall, E.Hart, P. Roasd S. Schulenburg (2003), Hyper-
heuristics an Emerging Directionin Modern Searchhfelogy,Handbook of Metaheu-
ristics (eds Glover F. and Kochenberger G. A.), 2003, 434-4

E.K.Burke, B.L.MacCarthy, S.Petrovic and R.Qu. (20&nowledge Discovery in a Hy-
perheuristic for Course Timetabling using Case Bdeasoning. in thBroceedings of
the Fourth International Conference on the Practamd Theory of Automated Time-
tabling (PATAT'02),

U. Buy, A. Orso, M. Pezze (2000), Automated testihglasses, in: Proceedings of the In-
ternational Symposium on Software Testing and Asial(lSSTA), 2000, pp. 39-48.

L. Chapman, J.E. Thornes, and A.V. Bradley (200&2Ky-view factor approximation using
GPS receivers,” International Journal Climatologgl, 22, no. 5, pp. 615-621.

Chellapilla K and Fogel DB (1999) "Evolution, Nelndetworks, Games, and Intelli-
gence," Proc. IEEE, Vol. 87:9, Sept., pp. 1471-1496

Chellapilla K and Fogel DB (1999b) "Evolving Neubtdétworks to Play Checkers without
Expert Knowledge," IEEE Trans. Neural Networks, Vd:6, pp. 1382-1391.



74

Chellapilla K and Fogel DB (2001) “Evolving an Exp€heckers Playing Program with-
out Using Human Expertise,” , IEEE TransactionsEmolutionary Computation, Vol.
5:4, pp.422-428.

Chen, S. H. (2002). Genetic Algorithms and GenBtisgramming in Computational Fi-

nance, Boston, MA: Kluwer.

Chen, S. H. & Yeh, C. H. (1996). Toward a Compadspproach to the Efficient Market
Hypothesis: An Application of Genetic Programmidgpf Economic Dynamics & Con-
trol, 21: 1043-1063.

Cheng, S. L. & Khai, Y. L. (2002). GP-Based Optiatisn of Technical Trading Indicators
and Profitability in FX MarketProceeding of the®International Conference on Neu-
ral Information Processing (ICONIP’ 02)/ol. 3, pp. 1159-1163.

H. Chernoff, (1972) Sequential Analysis and Optini2ésign (SIAM Monograph).
Philadephia, PA: SIAM, 1972.

C. Coello (2000), “An updated survey of GA-basedltiobjective optimization tech-
nigues,” ACM Comput. Surv. (CSUR), vol. 32, nopp, 109-143, 2000.

C. Coello, (2006) “Twenty years of evolutionary tivabjective optimization: A historical
view of the field,” IEEE Comput. Intell. Mag., vdl, no. 1, 2006.

David Corne, Kalyanmoy Deb, Peter Fleming and Jastnowles (2003) ‘The good of the

many outweighs the good of the one: evolutionarytiohjective optimization’,coN-
Nection$1(1): 9-13, ISSN 1543-4281.

Corne, D., Jerram, N., Knowles, J., Oates, M. (2GOESA-II: region-based selection in
evolutionary multiobjective optimization (2001) lin Spector, E.D. Goodman, A. Wu,
W.B. Langdon, H-M. Voigt, M. Gen, S. Sen, M. Dorjge. Pezeshk, M.H. Garzon, E.
Burke (eds.)Proceedings of GECCO-2001: Genetic and Evolution@pmputation
ConferenceMorgan Kaufmann, pp. 283—290.

David Corne, Martin Oates and Douglas Kell (200Blthess gains and mutation patterns:
deriving mutation rates by exploiting landscapeadat K De Jong, R Poli and J
Rowe, eds.Foundations of Genetic Algorithn&03, San Francisco, Morgan Kauf-
mann, pp. 347—364.

D. Cornford and J.E. Thornes (1996), “A comparid@tween spatial winter indices and
expenditure on winter road maintenance in Scotfantgrnational Journal of Climatol-
ogy, vol. 16, pp. 339-357.

P.Cowling, G.Kendall, E.Soubeiga. (2000) A Hyperisic Approach to Scheduling a
Sales Summit. In LNCS 2079, Practice and TheoryAofomated Timetabling Il :
Third International Conference, PATAT 2000, KongtaGermany, August 2000, se-
lected papers (eds Burke E.K. and Erben W), Sprikgelag, pp 176-190.

P.Cowling, G.Kendall and E.Soubeiga. (2002) Hyperiséics: a robust optimisation
method applied to nurse scheduling. Technical REYOTTCS-TR-2002-6, University
of Nottingham, UK, School of Computer Science & IT.

S.E.Cross and E.Walker (1994). Dart: applying krealge-based planning and scheduling
to crisis action planning. In M.Zweben and M.S.Fexjtors, Intelligent Scheduling.
Morgan Kaufmann.

Datta, R., Deb, K. (2009) A Classical-cum-Evolution Multi-objective Optimization for

Optimal Machining Parameters, Broc of NABIC 2009IEEE CIS Press.

Z. S. Davies, R. J. Gilbert, R. J. Merry, D. B. K&ll. K. Theodorou, and G. W. Griffith,
(2000) “Efficient improvement of silage additiveg bsing genetic algorithms,” Appl.
Environ. Microbiol, pp. 1435-1443, Apr. 2000.

K. Deb (1997). Mechanical component design usingegie algorithms. In D. Dasgupta
and Z. Michalewicz, editors, Evolutionary Algoritsmn Engineering Applications,
pages 495—512, New York: Springer-Verlag.

K. Deb (2000). An efficient constraint handling imed for genetic algorithm&omputer
Methods in Applied Mechanics and Engineeyit®62{4):311—338.



75

Deb, K. (2001) Multi-objective optimization usingatutionary algorithmsWiley.
Farnsworth, G. V., Kelly, J. A., Othling, A. S. &r, R. J. (2004). Successful Technical

Trading Agents Using Genetic Programming, SANDIApB® SAND2004-4774,
Sandia National Laboratories.

K. Deb, S. Agrawal, A. Pratap, and T. MeyarivanQ2p0 A fast and elitist multi-objective
genetic algorithm: NSGA-Il. IEEE Transactions on okxionary Computation,
6(2):182—197.

K. Deb and A. Kumar (1995). Real-coded genetic rlgms with simulated binary cross-
over: Studies on multi-modal and multi-objectiveolplems. Complex Systems,
9(6):431—454.

Deb, K. and Srinivasan, A. (2005). Innovization: Innovatiof design principles through
optimization. KanGAL Report No. 2005007.

Deb, K. and Srinivasan, A. (2006). Innovization: Innovatitkesign principles through op-
timization, inProc. GECCO 2008pp. 1629—1636, ACM, NY.

R. Doong, P.G. Frankl (1994), The astoot approackesting object-oriented programs,
ACM Transactions on Software Engineering and Methagly, pp. 101-130.

M. Ellims, J. Bridges, D.C. Ince (2006) The econesmf unit testing, Empirical Software
Engineering 11 (1): 5-31.

J. R. G. Evans, M. J. Edirisinghe, and P. V. Eames, (2001) “Combinatorial searches of
inorganic materials using the inkjet printer: Sciemphilosophy and technology,” J. Eur.
Ceramic Soc., vol. 21, pp. 2291-2299, 2001.

H-L Fang, P.M.Ross and D.Corne (1994) A Promisinypriitl GA/Heuristic Approach for
Open-Shop Scheduling Problems”, in ProceedindgsG#l 94: 11th European Confer-
ence on Atrtificial Intelligence, A. Cohn (ed), pp(k594, John Wiley and Sons Ltd.

R. Fisher (1971), The Design of Experiments, 9thNev York: Macmillan.

D. Fogel, (1998) Evolutionary Computation. The HoRecord. Selected Readings on the
History of Evolutionary Computation. IEEE Press989

Fogel, D.B. (2002) "Blondie24: Playing at the EddeAl", Morgan Kaufmann Publishers,
Inc., San Francisco, CA. ISBN 1-55860-783-8

Fogel DB, Hays TJ, Hahn SL, and Quon J (2004) "K-Searning Evolutionary Chess
Program," Proceedings of the IEEE, Vo0l.92:12, g#7:1954..

Fogel DB, Hays TJ, Hahn SL, and Quon J (2006) "Blendie25 Chess Program Com-
petes Against Fritz 8.0 and a Human Chess Madfeogeedings of 2006 IEEE Sympo-
sium on Computational Intelligence & Games, S. boaind G. Kendall (eds.), |IEEE,
Reno, NV, pp. 230-235.

C. Fonseca and P. Fleming, (1995) “An overview\aflgtionary algorithms in multiobjec-
tive optimization,” Evol. Comput., vol. 3, no. 1p.pl-16, 1995.

C. Fonseca and P. Fleming (1998), “Multiobjectiygimization and multiple constraint
handling with evolutionary algorithms. I. A unifidrmulation,” IEEE Trans. Syst.,
Man, Cybern. A, vol. 28, no. 1, pp. 26-37, 1998.

Fukunaga, A. (2008) Automated Discovery of Locahi@h Heuristics for Satisfiability
Testing,Evolutionary Computatiorl6(1): 31—61.

Fyfe, C., Marney, J. P. & Tarbert, H. (1999). TachhTrading versus Market Efficiency:

A Genetic Programming Approachpplied Financial Economi¢c®: 183-191.

I.P. Gent and T. Walsh. (1993) Towards an undedstgnof hill-climbing procedures for
SAT. In Proceedings of AAAI'93pages 28—-33. AAAI Press / The MIT Press, Menlo
Park, CA.

B.Giffler and G.L. Thompson. (1960) Algorithms feolving production scheduling prob-
lems. Operations Research, 8(4): pp 487-503.

Goldberg, D. E. (1989) Genetic Algorithms in Sear©ptimization, and Machine Learn-
ing. Addison-Wesley.




76

D. E. Goldberg (2002) The design of innovation: 4@ from and for Competent genetic
algorithms. Kluwer Academic Publishers.

J.Gratch, S.Chein, and G.de Jong (1993) Learniagchecontrol knowledge for deep space
network scheduling. In Proceedings of the Tentkrimtional Conference on Machine
Learning, pp 135-142.

Grefenstette, J. J. (1988) Credit assignment i@ discovery systems based on genetic al-
gorithms. Machine Learning 3. pp. 225-246.

H. Handa, L. Chapman, and X. Yao (2005), “Dynanaiktisg route optimisation using evo-
lutionary computation,” Proceedings of the 2005 @ess on Evolutionary Computa-
tion, vol. 1, pp. 158-165.

Handa, H., Chapman, L., Yao, X. (2006) Robust Rddp¢imization for Gritting/Salting
Trucks: A CERCIA ExperiencdEEE Computational Intelligence Magazjniéebruary
2006, pp. 6—9.

M. Harman, L. Hu, R. Hierons, A. Baresel, H. Stharf2002), Improving evolutionary
testing by flag removal, in: Genetic and EvolutighaComputation Conference
(GECCO), 2002, pp. 1351-1358.

E. Hart and P.M.Ross (1998) A heuristic combinatigethod for solving job-shop schedul-
ing problems. In A.E.Eiben, T.Back, M.Schoenaued H-P.Schwefel, editors, Parallel
Problem Solving from Nature V, LNCS 1498, pages-888. Springer-Verlag.

E. Hart, P.M.Ross, and J. Nelson (1998) Solvingal-world problem using an evolving
heuristically driven schedule builder. Evolution&gmputation, 6(1): pp 61-80.

Holland, J. H. (1992) Adaptation in Natural andificial Systems MIT Press.

Holland, J. H., Holyoak, K. J., Nisbett, R. E. ahldagard, P. R. (1986) Induction: Proc-
esses of inference, learning, and discovery. M@s&rCambridge, MA

Gregory S. Hornby, Al Globus, Derek S.Linden, aadah D. Lohn (2006) Automated An-
tenna Design with Evolutionary Algorithms" in AlASpace 2006, San Jose, CA.

W. G. Hunter and J. R. Kittrell. (1966). Evolutiopaoperation: A review. Technometrics
[Online]. 8(3), pp. 389-397. Available: http://wwstor.org/stable/1266686.

B. K. Kannan and S. N. Kramer (1994). An augmenégglange multiplier based method
for mixed integer discrete continuous optimizatemd its applications to mechanical
design. ASME Journal of Mechanical Design, 116(@):4-411.

Kerlogue, F., Zanetini, F. (2004) Batik: Desi@tyle and History. London: Thames and
Hudson.

J.C. King (1976) Symbolic execution and prograntiigs Communications of the ACM
(1976) 385-394.

C. G. Knight, M. Platt, W. Rowe, D. C. Wedge, F.a&thP. J. Day, A. Mcshea, J. Knowles,
and D. B. Kell (2008), “Array-based evolution of BNiptamers allows modelling of an
explicit sequence-fitness landscapdiicl. Acids ResNovember 2008.

J. Knowles (2006), “ParEGO: A hybrid algorithm with-line landscape approximation for
expensive multiobjective optimization problems,’EIE Trans. Evol. Comput., vol. 10,
no. 1, pp. 50-66, 2006.

Knowles, J.D. (2009) Closed-Loop Evolutionary Moitfjective Optimization|EEE Com-
putational Intelligence Magazinéugust 2009, pp. 77—91.

B. Korel (1990) Automated software test data get@malEEE Transactions on Software
Engineering,870-879.

Koza, J. R. (1992). Genetic Programming: On thegRnoming of Computers by means of
Natural Selection, Cambridge, MA: MIT Press.

P. Lacomme, C. Prins, and W. Ramdane-cherif (20@Qmpetitive memetic algorithms
for arc routing problems,” Annals of Operations &esh, vol. 131, pp. 159-185.

Lau, T.W.E., Ho, Y.-C.(1999) Super-heuristics ahneiit application to combinatorial prob-
lems,Asian Journal of Controfl(1):1—13.



7

Li Y, Hu CJ, Yao X. (2009) Innovative Batik desigvth an interactive evolutionary art
system. JOURNAL OF COMPUTER SCIENCE AND TECHNOLO®@¥(6): 1035—
1047 Nov. 2009

X. Liu, B. Wang, H. Liu (2005) Evolutionary searghthe context of object oriented pro-
grams, in: MIC2005: The Sixth Metaheuristics In&ional Conference.

Lo, A. W., Mamaysky, H. & Wang, J. (2000). Foundas of Technical Analysis: Compu-
tational Algorithms, Statistical Inference, and Engal ImplementationThe Journal of
Finance 55:1705-1770, 2000.

Lohpetch, D., Corne, D. (2009) Discovering EffeetiVechnical Trading Rules with Ge-
netic Programming: Towards Robustly Outperformingyfnd-Hold, in Vrld Con-
gress on Nature and Biologically Inspired CompufiN\BIC) 2009, IEEE Press.

Lohpetch, D., Corne, D. (2010) Outperforming Buytdtold with Evolved Technical
Trading Rules: Daily, Weekly and Monthly Tradijng EvoApplicationsProceedings of
EvoStar 2010, Springer LNCS.

Lutton, E. (2006) Evolution of fractal shapes fdisas and designers, International Journal
on Artificial Intelligence Tools, 15(4): 651-672.

D. Marinov, S. Khurshid, Testera (2001) A novelnfiework for testing java programs, in:
IEEE International Conference on Automated Softweamgineering (ASE).

Marney, J. P., Fyfe, C., Tarbert, H. & Miller, 2001). Risk Adjusted Returns to Techni-
cal Trading Rules: A Genetic Programming ApproaCbmputing in Economics and
Finance Soc. for Computational Economics, Yale UniversifgA, June 2001.

Marney, J. P., Miller, D., Fyfe, C. & Tarbert, F2000). Technical Analysis versus Market
Efficiency: A Genetic Programming ApproadBpmputing in Economics and Finance
Society for Computational Economics, Barcelona,irgphuly 2000 (paper #169).

Marney, J. P., Tarbert, H. & Fyfe, C. (2005). Ristfjusted Returns from Technical Trad-
ing: A Genetic Programming Approachpplied Financial Economi¢d5: 1073-1077.

D. McAllester, B. Selman, and H. Kautz (1997). Evide for invariants in local search. In
Proceedings of the 14th National Conference onfididi Intelligence pages 321-326.
AAAI Press / The MIT Press, Menlo Park, CA.

P. McMinn (2004) Search-based software test datargéion: a survey, Software Testing,
Verification and Reliability 14 (2) (2004) 105-156.

P. McMinn, M. Holcombe (2003) The state problem éeplutionary testing, in: Genetic
and Evolutionary Computation Conference (GECCODR@p. 2488-2500.

P. McMinn,M. Holcombe (2004) Hybridizing evolutionatesting with the chaining ap-
proach, in: Genetic and Evolutionary Computatiomf@cence (GECCO), pp. 1363—
1374.

P. McMinn, M. Holcombe (2005), Evolutionary testin§ state-based programs, in: Ge-
netic and Evolutionary Computation Conference (GBLQR005, pp. 1013-1020.

A. Messac and C. A. Mattson (2004). Normal constraiethod with guarantee of even
representation of complete pareto frontAlAA Journa) 42(10):2101—2111.

Murphy, J. J. (1999)Technical Analysis of the Financial Marketsew York: New York
Institute of Finance.

K. Miettinen (1999), Nonlinear Multiobjective Optination. New York: Springer.

S.Minton. (1988) Learning Search Control Knowledge: Explanation-based Approach.
Kluwer.

G. Myers (1979) The Art of Software Testing, Wil&ew York.

R. Myers and D. Montgomery (1995) Response Sutfféethodology: Process and Product
Optimization Using Designed Experiments. New Ydfkley.

Y. Nagata and S. Kobayashi (1997), “Edge assemiblssover: A high-power genetic algo-
rithm for the traveling salesman problem,” Procegdiof the 7th International Confer-
ence on Genetic Algorithms, pp. 450-457.



78

Neely, C. (2001). Risk-adjusted, ex ante, optireahhical trading rules in equity markets,
Working Papers 99-015D, Revised August 2001, FétRerserve Bank of St. Louis.

S. Nolfi and D. Floreano (2004), Evolutionary Rabst The Biology, Intelligence, and
Technology of Self-Organizing Machines. BradforcoBp2004.

S. O'Hagan, W. B. Dunn, M. Brown, J. D. Knowlesdab. B. Kell, (2005) “Closed-loop,
multiobjective optimization of analytical instruntation: Gas chromatography/time-off
light mass spectrometry of the metabolomes of husernm and of yeast fermenta-
tions,” Anal. Chem., vol. 77, no. 1, pp. 290-30302.

S. O'Hagan, W. Dunn, J. Knowles, D. Broadhurst\Rlliams, J. Ashworth, M. Cameron,
and D. Kell, (2007) “Closed-loop, multiobjective topization of two-dimensional gas
chromatography/mass spectrometry for serum metabedg” Anal. Chem., vol. 79, no.
2, pp. 464-476, 2007.

Ender Ozcah Burak Bilgin', Emin Erkan Korkmaz (2008§\ comprehensive analysis of
hyper-heuristicsintelligent Data Analysis12(1):3—23.

Potvin, J. Y., Soriano, P. & Vallée, M. (2004) Geating Trading Rules on the Stock Mar-
kets with Genetic Programming.omputers and Operations Researdfol. 31, Issue 7
(June 2004): 1033 - 1047

Pring, M. J. (1980)Technical Analysis Explaingtilew York: McGraw-Hill.

I. Rechenberg (1964), “Cybernetic solution pathaaf experimental problem,” Library
Transl., vol. 1122, 1964.

I. Rechenberg, (2000) “Case studies in evolutipredperimentation and computation,”
Comput. Meth. Appl. Mech. Eng., vol. 186, no. 2, 125-140, 2000.

G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell983). Engineering Optimization
Methods and Applications. New York : Wiley.

Romero, J., Machado, P. (2008) The Art of ArtdicEvolution: A Handbook of Evolu-
tionary Art and Music. Springer Neitherlands.

P. Ross, E.Hart and D.Corne (1997). Some Obsensmtidout GA-based Exam Time-
tabling. In LNCS 1408, Practice and Theory of Auated Timetabling Il : Second In-
ternational Conference, PATAT 1997, Toronto, Canaklagust 1997, selected papers
(eds Burke E.K. and Carter M), Springer-Verlag,145-129.

Ross, P. Javier G. Marin-Blazquez, Sonia SchulepbEimma Hart. (2003) Learning a
Procedure That Can Solve Hard Bin-Packing Problegxidew GA-Based Approach to
Hyper-heuristics Proceeedings of the Genetic and Evolutionary Coatpmrt Confer-
ence (GECCO 2003)Springer Lecture Notes in Computer Science V@4 pp 1295-
1306.

P.Ross, S.Schulenburg, J.G.Marin-Blazquez and E.f2002) Hyper-heuristics: learning
to combine simple heuristics in bin-packing prokderm Genetic and Evolutionary
Computation Conference (GECCO 2002).

P.Ross, S.Schulenburg, J.G.Marin-Blazquez and E.t2002) Learning a Procedure That
Can Solve Hard Bin-Packing Problems: A New GA-Bag®mproach to Hyper-
heuristics, iINGECCO 2003Springer LNCS, pp.

Ruggiero, M. A. (1997)Cybernetic Trading StrategighlY: Wiley.

Russell, Stuart J.; Norvig, Peter (2008y)tificial Intelligence: A Modern Approacf2nd
ed.), Upper Saddle River, NJ: Prentice Hall, pj3-181

R. Sagarna, A. Arcuri, X. Yao (2007) Estimationdidtribution algorithms for testing ob-
ject oriented software, in: IEEE Congress on Evohary Computation (CEC), 2007,
pp. 438-444.

A. L. Samuel, Some studies in machine learninggutfire game of checkerdlBM J. Res.
Develop, vol. 3, pp. 210-219, 1959.

J. Schaeffer, R. Lake, P. Lu, and M. Bryant, “CloikoThe world man-machine checkers
champion,”Al Magazine,.vol. 17, pp. 21-29, 1996



79

J. Schaeffer (1996)0One Jump Ahead: Challenging Human Supremacy in KelhedNew
York: Springer-Verlag, 1996, p. 97, 447.

A. Seesing (2006) Evotest: test case generatiargugnetic programming and software
analysis. Master’s thesis, Delft University of Taology.

B. Selman, H. J. Levesque, and D. G. Mitchell ()992new method for solving hard sat-
isfiability problems. In 10th AAAI, pages 440—44%an Jose, CA.

B. Selman, H.A. Kautz, and B. Cohen. (1994) Notsatsgies for improving local search.
In Proceedings of the 12th National Conference dfifi¢ial Intelligence, pages 337—
343. AAAI Press / The MIT Press, Menlo Park, CA.

Sharpe, W. F. (1966). "Mutual Fund Performandetrnal of Busines89 (S1): 119-138.
doi:10.1086/294846

Shaw, R. L. (1998) Fighter Combat : Tactics and &lmaering. United States Naval Insti-
tute Press.

Sims K. (1991) Artificial evolution for computer aphics. In Proc. the 18th Annual Con-
ference on Computer Graphics and Interactive Teglas (SIGGRAPH 1991), New
York: ACM Press, 1991, pp.319-328.

Smith , R. E., Dike, B. A., Mehra, R. K., Ravichaad , B. and El-Fallah, A. (2000). Clas-
sifier Systems in Combat: Two-Sided Learning of Kawers For Advanced Fighter
Aircraft. Computer Methods in Applied Mechanics and Engimegefi86 431—437.

R.E. Smith, B.A. Dike, B. Ravichandran, A. El-FallaR.K. Mehra (2002) Discoveing
novel fighter combat maneuvers: simulating tesbtpdreativity, in P. Bentley & D.
Corne (eds.LCreative Evolutionary Systemdorgan Kuafmann, pp. 467—486.

Smith, R. E. and Dike B. A. (1995) Learning novighter combat maneuver rules via ge-
netic algorithms. International Journal of Expeystems, 8(3) (1995) 247-276.

G. Tassey (2002) The economic impacts of inadegnétastructure for software testing,
final report, National Institute of Standards aretfinology.

H. Terashima-Marin, P.M.Ross, and M.Valenzuela-Rend999). Evolution of constraint
satisfaction strategies in examination timetablingW. Banzhaf et al., editor, Proceed-
ings of the GECCO-99 Genetic and Evolutionary Corapen Conference,pp 635-642.
Morgan Kaufmann.

Thompson, A. and P. Layzell (1999), “Analysis ofcanventional evolved electronics,”
Commun. ACM, vol. 42, no. 4, pp. 71-79, 1999.

P. Tonella (2004) Evolutionary testing of classasProceedings of the Interna-
tional Symposium on Software Testing and AnalyksSTA), 2004, pp. 119-
128

V. Trianni, S. Nolfi, and M. Dorigo (2006), “Coopive hole avoidance in a swarm-bot,”
Robot. Autonom. Syst., vol. 54, no. 2, pp. 97-10R)6.

C. Tuerk and L. Gold (1990), “Systematic evolutmfrligands by exponential enrichment:
RNA ligands to bacteriophage T4 DNA polymerase,feSce, vol. 249, no. 4968, p.
505.

W. Visser, C.S. Pasareanu, S. Khurshid (2004) ifgsit generation with java pathfinder,
in: Proceedings of the International Symposium aiftvgare Testing and Analysis
(ISSTA).

W. Visser, C.S. Pasareanu, R. Pela’nek (2006)ifpst generation for java containers us-
ing state matching, in: Proceedings of the Intéonal Symposium on Software Testing
and Analysis (ISSTA), 2006, pp. 37-48.

Wang, Y., Tan, T., Zhu, Y. (2000) Face verificatibbased on singular value decomposi-
tion and radial basis function neural network,Phoc 4" Asian Conf. on Computer Vi-
sion, pp. 432—436.



80

Wang, S.F., Wang, S., Takagi, H. (2006) User tatigeduction by an absolute rating data-
trained predictor in IEC, Proc. 2006 Congress amliionary Computation, pp.
2195—2200.

S. Wappler, J. Wegener (2006) Evolutionary unitingsof object-oriented software using
strongly-typed genetic programming, in: Genetic &wblutionary Computation Con-
ference (GECCO), 2006, pp. 1925-1932.

D. Wedge, W. Rowe, D. Kell, and J. Knowles (2009),silico modelling of directed evo-
lution: Implications for experimental design anemtise evolution,” J. Theor. Biol.,
vol. 257, pp. 131-141.

S. Wilson (1998) Generalisation in the XCS classifiystem. In proceedings of the Third
Genetic Programming Conference (J.Koza ed.), pp685 Morgan Kaufmann.

T. Xie, D. Marinov, D. Notkin, (2004) Rostra: a fnework for detecting redundant object-
oriented unit tests, in: IEEE International Confere on Automated Software Engineer-
ing (ASE), pp. 196—205.

T. Xie, D. Marinov,W. Schulte,D. Notkin (2005) Symresa framework for generating ob-
ject-oriented unit tests using symbolic executiion,Proceedings of the 11th Interna-
tional Conference on Tools and Algorithms for then€truction and Analysis of Sys-
tems, pp. 365-381.



