
Selected Applications of Natural Computing

David Corne, Heriot-Watt University, UK
Kalyanmoy Deb, IIT Kanpur, India
Joshua Knowles, University of Manchester, UK
Xin Yao, University of Birmingham, UK

1. Introduction

The study of Natural Computation has borne several fruits for science, industry
and commerce. By providing exemplary strategies for designing complex biologi-
cal organisms, nature has suggested ways in which we can explore design spaces
and develop innovative new products. By exhibiting examples of effective co-
operation among organisms, nature has hinted at new ideas for search and control
engineering. By showing us how highly interconnected networks of simple bio-
logical processing units can learn and adapt, nature has paved the way for our de-
velopment of computational systems that can discriminate between complex pat-
terns, and improve their abilities over time. And the list goes on.

It is instructive to note that the methods we use that have been inspired by na-
ture are far more than simply ‘alternative approaches’ to the problems and applica-
tions that they address. In many domains, nature-inspired methods have broken
through barriers in the erstwhile achievements and capabilities of ‘classical’ com-
puting. In many cases, the role of natural inspiration in such breakthroughs can be
viewed as that of a strategic pointer, or a kind of ‘tie-breaker’. For example, there
are many, many ways that one might build complex multi-parameter statistical
models for general use in classification or prediction; however, nature has exten-
sive experience in a particular area of this design space, namely neural networks –
this inspiration has guided much of the machine learning and pattern recognition
community towards exploiting a particular style of statistical approach that has
proved extremely successful. Similar can be said of the use of immune system
metaphors to underpin the design of techniques that detect anomalous patterns in
systems, or of evolutionary methods for design.

Moreover, it seems clear that natural inspiration has in some cases led to the
exploration of algorithms that would not necessarily have been adopted, but have
nevertheless proven significantly more successful than alternative techniques. Par-
ticle swarm optimisation, for example, has been found enormously successful on a
range of optimisation problems, despite its natural inspiration having little to do
with solving an optimisation problem. Meanwhile, evolutionary computation, in
its earliest days, was subjected to much scepticism and general lack of attention –

2

why should a method be viable for real-world problems when that method, in na-
ture, seems to take millions of years to achieve its ends? What need is there for
slow methods that rely on random mutation, when classical optimisation has a ma-
ture battery of sophisticated techniques with sound mathematical bases? Neverthe-
less, evolutionary methods are now firmly established, thanks to a long series of
successful applications in which their performance is unmatched by classical tech-
niques.

The idea of this chapter is to present and discuss a collection of exemplars of
the claims we have made in this introduction. We will look at a handful of selected
applications of natural computation, each chosen for a subset of reasons, such as
level of general interest, or impact. We will consider some classic applications,
which still serve as inspirational to current practitioners, and we will look at some
newer areas, with exciting or profound prospects for the future.

The applications are loosely clustered into four themes as follows. We start
with applications under the banner of ‘Strategies’, in which we look in detail at
three examples in which natural computing methods have been used to produce
novel and useful strategies for different enterprises. These include an evolution-
ary/neural hybrid method which led to the generation of an expert checkers player,
the use genetic programming to discover rules for financial trading, and the eploi-
tation of a learning classifier system to generate novel strategies for fighter pilots.
The next theme is ‘Science and engineering’ in which we consider applications
that have wider significance for progress in one or more areas of science and engi-
neering, in areas (or in ways) that may not be traditionally associated with natural
computing. Our two exemplars in this area are the use of multiobjective evolu-
tionary computation for a range of areas (often in the bio and analytical sciences)
for closed-loop optimization, and the concept of innovization, which exploits mul-
tio-objective evolutionary computation in a way that leads to generic design in-
sights for mechanical engineering (and other) problems. We then move on to a
‘Logistics’ theme, in which we exemplify how natural computing (largely, learn-
ing classifier systems and evolutionary computation) has provided us with suc-
cessful ways to address difficult logistics problems (we look at the case of a real-
world truck scheduling problem), as well as a way to design new fast algorithms
for a range of logistics and combinatorial problems, via approaches we refer to as
‘super-heuristics’ and/or ‘hyper-heuristics’. Finally, we consider the theme of ‘De-
sign’, and discuss three quite contrasting examples. These are, in turn, antenna de-
sign, Batik pattern design, and the emerging area of software design using natural
computing methods.

2 Strategies: Generating Expert Pilots, Players, and Traders

Many problems in science and industry can be formulated as an attempt to find a
good strategy. A strategy is, for our purposes, a set of rules (or an algorithm, or a

3

decision tree, and so forth) that sets out what to do in a variety of situations. Ex-
pert game players are experts, presumably, because they use good strategies. Simi-
lar is true for good pilots, and successful stock market traders, as well as myriad
other professionals who are expert in their particular domain. It may well come as
a surprise to some that humans do not have the last word on good strategy –
strategies can be discovered by software which, in some cases, can outperform
most or even all human experts in particular fields. In this section we will look at
three examples of applications in which strategies have been developed via natural
computing techniques, respectively for piloting fighter aircraft, for playing expert-
level checkers, and for trading on the stock market.

2.1 Discovery of Novel Combat Maneuvers

In the early 90s and beyond, building on funding support from NASA and the
USAF, a diverse group of academics and engineers collaborated to explore the
automated development of strategies for piloting fighter aircraft. A broad account
of this work (as well as herein) is available as Smith et al (2002). The natural
computing technology employed is termed ‘genetics based machine learning’
(GBML), the most common manifestation of which is the learning classifier sys-
tem – essentially a rule based system that adapts over time, with an evolutionary
process central to the rule adaptation strategy. In this work, such an adaptive rule-
based system takes the role of a test pilot. In the remainder of this section we will
cover some of the background and motivation for this application, as well as ex-
plain the computational techniques used, and present some of the interesting and
novel results that emerged from this work.

Background: New Aircraft and Novel Maneuvers

As explained in Smith et al (2002), a standard approach, when developing a new
fighter aircraft, is to make a prototype for experimentation by test pilots, who then
explore the performance of the new aircraft and, importantly, are then able to de-
velop combat maneuver strategies in simulated combat scenarios. Without such
testing, it is almost impossible to understand how a new aircraft will actually per-
form in action, which in turn depends, of course, on how it will be flown by ex-
perienced pilots. In particular, it is very important that pilots are able to develop
effective and innovative combat strategies that exploit the technology in the new
craft. Following such testing, issues in performance are then fed back into the de-
sign process, and perhaps the prototype will need to be re-engineered, and so
forth. This testing process is obviously very expensive – costing the price of at
least one prototype craft, and the time of highly-skilled pilots. One way to cut this
cost includes using a real pilot, but to ‘fly’ a simulation of the new craft; another is

4

to resort to entirely analytical methods; however both of these approaches are
problematic for different reasons (Smith et al, 2002). The idea of Smith et al’s re-
search is to explore a third approach, in which a machine learning system takes the
place of a test pilot, and operates in the context of sophisticated flight simulations.

To help better understand the motivation for this work, and grasp the im-
portance of developing novel maneuvers, it will be useful to recount some back-
ground in fighter aicraft piloting. This is adapted next from Smith et al (2002),
while a comprehensive account is in Shaw (1998). A relatively new aspect of
modern fighter aircraft is the use of post-stall technology (PST). This refers to sys-
tems that enable the pilot to fly at extremely high angles of attack (the angle be-
tween the aircraft’s velocity and its nose-tail axis). Pilots have developed a range
of combat maneuvers associated with PST flight, including, for example, the
Herbst Maneuver, in which the aircraft quickly reverses direction via a combina-
tion of rolling and a high angle-of-attack. In another example, the Cobra Maneu-
ver, the aircraft makes a very quick pitch-up from horizontal to 30 degrees past
vertical; the pilot then pitches the aircraft's nose down and resumes normal flight
angles. This causes dramatic deceleration, meaning that a pursuing fighter will
overshoot. The technologies that allow PST flight have led to the invention of
these and several other maneuvers, as well as the prevalence of tactics that involve
‘out-of-plane’ maneuvering, where the attacking aircraft flies in a continually
changing maneuvering plane, invariably different from the plane of the target
craft. This link between new technologies and new maneuvers is critical in the de-
sign and deployment of new aircraft, and is the focus of Smith et al’s work. The
results that are described later involve experiments in which the attacking craft
was an X-31 experimental fighter plane, with sophisticated PST capability, and
where the target craft in the simulations was an F-18.

Learning Classifier Systems

Learning classifier systems (LCSs: Holland et al, 1986; Grefenstette, 1988; Gold-
berg, 1989; Holland, 1992) use a collection of rules called classifiers in the form
of state/action pairs. Each such pair indicates an action to take if the environment
currently matches the ‘state’ part of the rule. An LCS operates in an environment
according to its current set of classifiers, and uses reinforcement learning and
other adaptation methods, in particular including genetic algorithms (GAs), to
gradually adapt the rules over time. Classically, a classifier in an LCS represents
states and actions as binary strings, but states may also contain ‘don’t care’ char-
acters (#s). For example, the string: “0 1 0 # 1 / 0 1 0” is a classifier with the
meaning: “If the environment is in state 0 1 0 0 1 or state 0 1 0 1 1, then perform
action 0 1 0”.
 In a typical LCS, each cycle begins with a message representing the state
of the environment (as we will see, the environment in the fighter plane combat
context is simply a characterisation of the relative positions and velocities of the
aircraft in the simulation). The LCS then sees which of its classifiers match this

5

environmental message. There may of course be several, and some form of con-
flict resolution method must then be invoked to decide which classifier’s action
will be executed. The action eventually chosen is then performed. This action may
lead to a reward – i.e. some aspect of the environment becomes (more) favourable,
and the classifier which led to this action receives an increment to its ‘fitness’
score. In some classifier systems, sophisticated credit allocation systems are in
place to ensure that the most recent action does not necessarily receive all of the
credit. After some specified number of cycles, the genetic algorithm is invoked.
The GA population is formed from a subset of the classifiers, focussing on those
with higher fitness. New classifiers are produced by standard genetic operations
on selected classifiers (where, naturally, selection is biased by fitness), and these
are then incorporated into the LCS, over-writing some of the less fit existing clas-
sifiers. Clearly, an LCS operates in a way that attempts to find – via the GA,
which is in turn informed by the fitnesses of classifiers, which in turn are informed
by experience in the environment – a good set of classifiers that achieves contin-
ual rewards in its environment.

Implementation, experimentation details, and results

The way that LCS technology has been used, with considerable and long-
established success in the domain of combat maneuver discovery (Smith & Dike,
1995; Smith et al, 2002), is basically as follows. The task faced by the LCS is
(typically) a one on one engagement for a specific amount of time, such as 30 sec-
onds. There is a specified initial configuration of positions and velocities, and the
period is divided into periods of 0.1 seconds (i.e., each action of the classifier pilot
must last for at least 0.1 seconds before another action can be performed). At each
of the (typically) 300 timesteps during a simulation, each aircraft observes the cur-
rent configuration, and decides on an action. At the end of an engagement, a score
can be calculated based on the relative probabilities of the two aircraft having
damaged their opponents.
 All Smith et al’s experiments employed AASPEM, the Air-to-Air System
Performance Evaluation Model developed by the U.S. Government for computer
simulation of air-to-air combat. The encoding of the state/action parts of a classi-
fier were as follows. The state part of a classifier comprised 20 bits: 6 bits were
used to encode the two ‘aspect angles’ that gave the current relative positions of
the aircraft in terms of their lines of sight. The remaining 14 bits were used to en-
code 7 parameters (hence, each discretised into 4 bins), namely: range, speed,
delta speed, altitude, delta altitude, climb angle, opponent’s climb angle. The ac-
tion part of a classifier comprised 8 bits, encoding 3 parameters: a relative bank
angle (3 bits), an angle of attack (3 bits) and a speed (2 bits). Speed, for example
was either 100 knots (00), 200 knots (01), 350 knots (10) or 480 knots (11). The
meaning of an action that specified (for example), relative bank angle of 30 de-
grees and speed of 200 knots, was to aim for these as desired targets. In all cases,

6

the simulation environment (i.e. the AASPEM system) would automatically inter-
pret these aims into realistic actions.
 A set of such classifiers therefore represents a general strategy, and sub-
sets of related classifiers can potentially encode entire novel maneuvers. During a
simulated engagement, the classifiers are run for 300 cycles, as described; when
no classifier matches the current environmental configuration, a default action for
straight, level flight is used. When more than one classifier is matched, the fittest
one is chosen as the provider of the action. At the end of the 300 cycles, a fitness
measure is calculated. Following experiment with various approaches, the most
promising fitness measurement was found to be based on the difference between
the self and the opponents’ ‘aspect angles’. This basically gives a score that is a
linear function along the continuum from: self is aiming directly at opponent’s tail
to opponent is aiming directly at self’s tail, with the former obviously preferred.
The fitness assigned after an engagement was based on the average of this value
over the entire engagement, and is assigned to every individual classifier that was
active at any point during the engagement
 Following a full engagement, the GA then operates over the whole popu-
lation of classifiers. Using a moderate selection pressure for parents, and standard
crossover and mutation operations, a collection of new classifiers is generated.
The fitness assigned to a new classifier is simply the average of its parents’ fit-
nesses. Typically, about half of the classifiers in a population were replaced with
new classifiers. A learning run would continue with repeated such engagements
(perhaps ~500), each resulting in fitness assignment and operation of the GA,
leading to a revised set of classifiers for use in the next engagement. The starting
configuration for all engagements in a single run was always one from the small
set of tactically interesting situations shown in figure 1.

Figure 1. The matrix of initial conditions for the combat simulations.

7

The conditions in figure 1 were designed to generate X-31 tactics results for a
balanced set of relevant situations.
 The early experiments described in Smith & Dike (1995) were much as
just described, involving one-on-one combat, in which the LCS attempted to find
novel maneuvers for the X-31, but the opponent F/A-18 aircraft used a fixed (al-
though suitably reactive and challenging) set of standard maneuvers embedded in
AASPEM. In short, the opponent would always attempt to execute the fastest pos-
sibl turn that would leave it pointing directly at its opponent, at the same time at-
tempting to match the opponent’s altitude.
 As reported in considerably more detail in Smith & Dike (1995), this
setup led to the discovery of a wide variety of new and novel fighter maneuvers,
which were evaluated in positive terms by real fighter test pilots. An example such
maneuver is shown in figure 2.

Figure 2. A example of a novel maneuver evolved by the learning classifier sys-
tem under the HSHP starting condition (see figure 1). The aircraft on the left is
following a fixed, but reactive strategy; the aircraft on the right is following a
strategy evolved by the LCS, which in turn is a new variation on the Herbst ma-
neuver.

The strategy discovered by the LCS in figure 2 involves pitching upwards sharply,
stalling, tipping over, and then engaging the opponent with a favourable relative
position. This turns out to be a variation on the ‘Herbst maneuver’ mentioned ear-

8

lier – in fact it was common for the LCS to rediscover exising maneuvers, as well
as discover novel variations.

In later work (Smith et al, 2000), both opponents were controlled by a
separate LCS. As Smith et al (2002) describe, in this scenario, reminiscent of the
continuous iterated prisoners’ dilemma (IPD), the resulting dynamic system has
four potential attractors, the most attractive of which is an ‘arms race’ dynamic, in
which each pilot continuously improves his strategies. Smith et al (2000) explored
various setups and indeed found that an arms race effect reliably occurs under
some conditions.

Findings and Impact

Smith & Dike (1995) and Smith et al (2000) contain and discuss several more ex-
amples of discovered maneuvers, including some revealing expositions of arms
races that develop under the conditions of two LCSs in combat with each other.
One clear result of this (still ongoing) work is the real impact it has had on its in-
dustrial collaborators. In general, the aerodynamics of a new aircraft can be under-
stood before the first prototype is flown; but, the complexities of piloting and
combat, and consequently any real knowledge about the potential combat per-
formance with skilled pilots, are much more difficult to predict. Discovering suc-
cessful combat maneuvers in the way described has many advantages – in particu-
lar, without the cost of test pilot time or prototype construction, LCS experiments
generate rich sources of information on combat advantages (or disadvantages) that
can be fed back to designers, pilots and customers. The system described briefly
here, and more fully in Smith et al (2000; 2002), and Smith & Dike (1995), has re-
sulted in several novel strategies that have been approved by test fighter pilots,
and continue to provide useful results in a highly complex, real-world domain.

2.2 Developing an Expert Checkers Player

Our next example comes from the area of ‘computational intelligence’. The term
“computational intelligence” has come to be associated largely with the major
fruits of nature-inspired computing, particularly evolutionary, neural and fuzzy
techniques. This is not be confused with the older, more well-established term
“Artificial Intelligence”, which stands for the much wider enterprise of, by what-
ever means, designing algorithms and systems that perform functions that can be
called “intelligent”. Artificial intelligence (AI) includes classic areas and tech-
niques such as expert systems, heuristic tree search, machine vision, natural lan-
guage processing, planning, and so forth, as well as the growing range of nature-

9

inspired techniques. AI is concerned with everything from full-scale intelligent
systems, through to the details of appropriate heuristics for edge detection in im-
ages from a narrow domain.

Basically, almost any activity, other than those that are ‘‘easy” for computers to
handle with standard techniques, can be labeled with the adjective “intelligent”.
However, via natural computing, achievements have been made that will seem
genuinely surprising to many people. It is no great surprise, for example, that
computers can design, more successfully than humans, effective production
schedules for factories with thousands of jobs per day. However it perhaps is sur-
prising that we can produce software that plays checkers at the level of an expert,
without encoding any expert knowledge of the game.

Blondie24

During 1999, on an internet gaming site called “The Zone”, an online checkers
player with the screen name Blondie24 regularly played against a pool of 165 hu-
man opponents, and achieved a rating of 2048, placing it well into the top half a
percent of checkers players using that site. Blondie24 learned to play well at
checkers, as did all of the good human players using that site (or otherwise). How-
ever, “she” was (and still is) a computer program.

 In common with many successful artificial intelligence game playing pro-
grams, Blondie24 (Chellapilla & Fogel, 1999; 1999b; 2001; Fogel, 2002) incor-
porates a minimax algorithm (Russell & Norvig, 2003) to traverse the game tree
induced by the available moves from the current position. However, individual
nodes in the tree are evaluated by an artificial neural network (ANN). The input to
this ANN is a specialised representation of the current state of the game, and the
output is a single value that is then used by the minimax algorithm. So far so clear
– we can perhaps imagine that a well trained or well-designed ANN could be ca-
pable of returning values in this context that would translate to competent check-
ers playing. But how can we design, or train, such an ANN? In Blondie’s case,
training was accomplished by using an evolutionary algorithm. A population of
such ANNs played against each other, accumulating points over many games. The
result of a game between two such ANNs comes down to a single value (per
ANN) – either 1 (win), 0 (draw), or −2 (lose) – and the overarching evolutionary
algorithm operates by regarding the fitness of an ANN as its total score after a
number of games. In each ‘generation’ of this evolutionary algorithm, the ANNs
with the lowest scores are eliminated, and new ones are generated by making mu-
tant copies of the better performers, and so it continues.

For several reasons, Blondie24’s design and its success are both surprising and
significant. Its prowess at checkers does not rely on tuition by human experts. In-
stead, it emerges from the evolutionary algorithm process, guided only by the
bare, raw total of points earned after playing several games. If an individual had a
fitness of 6, for example, it was considered better (and hence had more chance for

10

selection as a parent) than an individual with fitness 4. However this takes no ac-
count of the distribution of wins, losses and draws. The individual with fitness 6
may have won 6 games and drawn 4, while the individual with fitness 4 may have
won 8 games and lost 2.

Guided only by this summary measure of performance, an evolutionary algo-
rithm was able to traverse the space of checkers-playing-ANNs (or, more cor-
rectly, ANNs for evaluating game positions in the context of minimax search) and
emerge with expert-level players. It is worth covering in more detail the approach
taken to generate Blondie24, which we do next, following the treatment provided
in Chellapilla & Fogel (2001).

Checkers: the game

Checkers, known in some countries as ‘draughts’, involves an eight-by-eight
board with squares of alternating colors, equivalent to a chessboard. Each player
has 12 identical pieces, and the initial game position is as detailed in Figure 3.

Figure 3. The initial position in a game of checkers. The White player moves up-
wards, and the Black player moves downwards.

When it is a player’s turn to move, the allowed moves are: an individual piece can
move diagonally forward by one square; or an individual may jump over an oppo-
nent’s checker into an empty square. Such a “jump” is only allowed if it takes two
diagonal steps in the same direction, the first such step is occupied by an oppo-
nent’s piece, and the second step is currently empty. After a jump, the opponent’s
piece is removed from play.

If one or more jump moves are available, then it is mandatory for the player to
make such a move. If an opponent manages to find itself in the final row (from

11

their side’s viewpoint), it becomes a “king” piece. It is then able to move either
forward or backward, but otherwise follow the same rules. The object of the game
is to reach a position in which your opponent has no possible moves – a common
way in which this happens is for the opponent’s pieces to all have been removed.

Representing the board and evaluating moves

Chellapilla and Fogel (2001) used a straightforward and sensible approach to en-
coding a board position. The current state of the game is simply represented by a
vector of 32 numbers, one for each board position. The numbers in a position are
either -K, -1, 0, 1, or K, where K represents a value assigned to a king. From the
viewpoint of a given player, a 1 or a K at a given board position represent, respec-
tively, either a standard piece or a king at that position, while the negative values
are used to represent the opponent’s pieces, and zero indicates an empty position.
In Chellapilla and Fogel’s work, K was not preset. Rather than bias the process
towards giving a king any particular relative value over an ordinary piece, the
value of K was itself subject to evolution.

When a move is to be made, Blondie24 operates by evaluating, in turn, each of
its possible moves. Any such move leads to a future board position, and this future
board position is evaluated by the ANN. The input to the ANN is therefore this
32-dimensional vector. As is well known from ANN theory, any reasonable ANN
architecture (in terms of the number of hidden layers and the numbers of nodes in
each layer) might suffice in being capable of then performing the appropriate
mapping from input vector to appropriate, useful output. The difficulty, as ever, is
in choosing an appropriate training regime, that promotes learning of suitable fea-
tures and components of the problem state that are useful guides towards a proper
evaluation. After initial experiments with a more straightforward neural network
architecture (which did not encapsulate the spatial information that human players
take for granted), Chellapilla and Fogel’s designed the architecture of the ANN in
a way that highlighted potentially appropriate features. This was done as follows.

Each 3x3 block on the board was represented by its own unit in the first hidden
layer. That is, given any specific 3x3 block, one of the units in the first hidden
layer received incoming connections from that specific set of 9 inputs from the in-
put layer (from the 9 parts of the vector corresponding to the component positions
of that 3x3 block), and had no incoming connections from any of the other units.
In this way, a specific signal emerging from this unit, for later processing in sub-
sequent layers, summarises the state of play in that specific 3x3 block. The first
hidden layer contained such a unit for each of the 36 different 3x3 blocks on the
board. In just the same way, each 4x4 block, 5x5 block, 6x6 block, 7x7 block, and
8x8 block (of which there was of course just one) was represented in the first hid-
den layer by its own unit. This resulted in a set of 91 units which comprised the
first hidden layer.

12

Figure 4. The architecture of the Blondie24 artificial neural network,

The complete picture of the ANN’s architecture is given in Figure 4. Between

the input layer, which simply carries 32 units, one per board position, and the first
hidden layer, the connections are arranged according to the specific feature en-
coded by each of the units in hidden layer 1. Between the pairs of layers, the con-
nections are all complete – e.g. each unit in hidden layer 1 has a feedforward con-
nection to each unit in hidden layer 2, and similar for hidden layers 2 and 3, while
every unit in hidden layer 3 is connected to the single output unit. The output unit
receives an additional input, which is the sum of the 32 board positions.

In total, including bias weights, there are 5046 connections in this network,
each of which is a real-valued weight subject to the evolution process. In addition,
every hidden layer unit has a bias input, which means an additional weight to be
evolved. Each unit in the hidden layers operates in the standard way, common in
most ANN applications, by calculating the weighted sum of its inputs and apply-
ing the hyperbolic tanget function, resulting in an output signal strictly between -1
and 1. From the perspective of the ANN ‘player’, this ultimate scalar value is di-
rectly used as an estimate of the value of this board position. The closer to 1, the
better for the ANN. However, where the board position was actually a win for the
ANN, the value was taken to be precisely 1, and if it was a win for the opponent
the value was taken to be -1.

Full intercon-
nection

. . .

32 inputs

91 feature units
in hidden layer 1

. . .

Connections
wired accord-
ing to compo-
nents of fea-
tures in hidden
layer 1

40 units in
hidden layer 2

. . .

10 units in
hidden layer 3

Full
inter
connection

 Full
inter
connection
plus one extra
input: sum of
the 32 board
positions.

Single
output
unit

13

Evolving Checkers Players

The process begins with a population of 15 such ANNs, which are initialized ran-
domly. Every connection weight and bias value is given a value chosen uniformly
at random from the interval [-0.2, 0.2], and with K set initially at 2.0. In common
with the practice of evolutionary programming and evolution strategies, each indi-
vidual in the population also contained a vector of step size parameters. For every
connection weight, and every corresponding bias unit, there was also a step-size
parameter governing the range of mutations that would be applied to that parame-
ter. That is, when a weight or bias parameter was mutated, this was done by add-
ing a Gaussian perturbation whose mean was 0 and whose variance was provided
by the associated step size parameter in the chromosome. The step-sizes were ini-
tially all set at 0.05, and then subject to evolution along with the other parameters.

Whenever an ANN was selected as a parent, its offspring was generated as fol-
lows: first, each of the step size parameters was mutated, by multiplying it with a
random number from a specific exponential distribution, and every weight and
bias parameter was mutated by adding a Gaussian perturbation whose step size
was the associated step size parameter, as indicated. Finally, recall that each indi-
vidual also carries its own value for K, which is also subject to evolution. This was
mutated by adding a perturbation chosen uniformly at random from the set {–0.1,
0, 0.1}, but was protected from moving below 1 or above 3.

During the evolution process, Each ANN played one game each against five
opponents, selected uniformly from the population. With the scoring for individual
games as indicated, the ANN would therefore accumulate a score over these five
games ranging from –10,(all losses) to 5 (all wins). A game was declared as a
draw (zero points) if it lasted for 100 moves. Essentially, in each generation each
ANN took part in around 10 games, and the top 15 (in terms of points received)
became parents for the next generation. Each individual game was played using a
minimax alpha-beta search set to 4-ply (with extended ply in a number of special
cases). After 840 generations in which evolving ANNs played against each other,
the best resulting ANN was then harvested and recruited to play against human
opponents on the internet gaming site “The Zone”. In the next subsection, we
summarise the surprising and remarkable resulting performance of this ANN.

Humans vs Evolved ANNs

Over a two-month period, the evolved ANN, eventually named “Blondie24”
(which was successful in attracting opponents) played 165 games against human
opponents at “The Zone”, although opponents were not aware they were playing
against a computer program. In these games, the ANN used an 8-ply search, and

14

faced a variety of opponents. The ANN’s performance placed it at better than
99.6% of all the (rated) players using the site. On one occasion, the ANN beat an
expert-level player (with a rating of 2173, just below the master level of 2200)
who was ranked 98th of over 80,000 registered players.
 Chellapilla & Fogel (2001) performed some comprehensive control ex-
periments, which showed that the evolved ANN operated with a clear advantage
over a system that simply used the piece differential as the basis for choosing
moves in an 8-play approach. In particular, they compared the ANN with a piece-
differential based player, on the basis of using equal CPU time in their lookahead
search at each move; this disadvantages the ANN, since it has over 5,000 weight
parameters involved in its heuristic calculation, so the piece-differential player can
look further ahead in the time available. These experiments showed conclusively
that the evolved ANN was a significantly better player in both equal-ply and equal
CPU-time conditions.
 The achievement of Blondie24 is remarkable from many viewpoints: par-
ticularly the essential simplicity of its approach, the fact that the search landscape
for the evolutionary algorithm was so huge, and the fact that fitness assessment
was a relatively coarse measure of a network’s performance. A straightforward as-
sessment of Blondie24’s ‘message’ to us is that it exemplifies the flexibility and
potential of evolutionary search, even when this is recruited to search a coarse-
grained 10,000-dimensional landscape (the evolution strategy that was employed
optimised both a weight and a step-size parameter for each connection). Achieving
expert level performance (over 2,000 points) is considerably superior to most hu-
mans. Perhaps not surprisingly, this is also certainly superior to a simpler (but
seminal) approach in this area by Samuel (1959), which attempted to derive, by an
iterative learning process, a polynomial board rating function. Chellapilla and
Fogel (2001) note that this was considered to rate below 1600 in the opinion of the
American Checkers Federation Games Editor.

The world champion checkers program, Chinook (Schaeffer et al, 1996),
is rated at over 2800, over 100 points above its closest human competitors
(Schaeffer, 1996). In fact it is now known that Chinook can never be defeated in
`go-as-you-please’ checkers, in which there are no restrictions on the initial
moves. The chief difference between Blondie24 and Chinook is the amount of
built-in specialised knowledge. In Chinook, the level of such knowledge is very
substantial indeed; in Blondie24 it is virtually none. Along with many other ele-
ments informed by careful expert knowledge and tuning, Chinook incorporates a
database of games from previous grand masters and a complete endgame database
for all cases that start from ten pieces or fewer. Blondie24 and Chinook represent
entirely different artifical intelligence approaches to designining a game-playing
program. It is not difficult to argue that the approach taken by Blondie24 is the
more interesting and impactful – from no prior knowledge, other than a built-in
awareness of the rules of the game, an expert level player emerged from the evolu-
tionary process, providing a very tough, usually unsurmountable challenge to all
but a very small percentage of human players.

Finally, since the checkers research, Chellapilla & Fogel’s approach was
extended to address chess, by combining the co-evolutionary spatial neural net-

15

work approach with domain-specific knowledge (Fogel et al, 2004; 2006). The re-
sult was an evolved chess player that earned wins over Fritz 8, which was the 5th
best computer program in the world at that time.

2.3 Discovering Financial Trading Rules

Financial markets are complex and ever-changing environments in which groups
of individuals, companies and other investors are always competing for profit.
There are many opportunities in this area for machine learning and optimization
methods, and consequently a variety of natural computation approaches, to be ex-
ploited, and a chapter in this volume is indeed devoted to this topic. In this section,
we focus on one specific thread of research in this area – which has a simply
grasped approach and a straightforward task to solve. This is the use of genetic
programming to discover new and valuable rules for financial trading.

 It is now common to see applications of evolutionary computation applied to
the financial markets (Brabazon & O’Neil, 2005; this volume). Genetic Program-
ming (GP) (Koza, 1992; Angeline, 1996; Banzhaf et al, 1998) is particularly
prominent in terms of the degree to which it has recently been applied in finance
(Chen & Yeh, 1996; Fyfe et al, 1999; Allen & Karjaleinen, 1999; Marney et al,
2001; Chen, 2002; Cheng & Khai, 2002; Farnsworth et al, 2004; Potvin et al,
2004). In this section we focus on the specific area in finance known as technical
analysis (Pring, 1980; Ruggiero, 1997; Murphy, 1999; Lo et al, 2000). Technical
analysis is a set of techniques that forecast the future direction of stock prices via
the study of historical data. Many different methods and tools are used, all of
which rely on the principle that price patterns and trends exist in markets, and that
these can be identified and exploited.

Common tools in technical analysis include indicators such as moving aver-
ages (the mean value of the price for a given stock or index over a given recent
time period), relative strength indicators (a function of the ratio of recent upward
movements to recent downward movements). There have been a number of at-
tempts to use GP in technical analysis for learning technical trading rules, and a
typical strategy is for such a GP-produced rule to be a combination of technical
indicator ‘primitives’ with other mathematical operations. Such a rule is often
called a ‘signal’. E.g. GP may be employed to find both a good buy signal and a
good sell signal – that is, one rule which, if its output is above 0, indicates that it is
a good time to buy, and a different rule indicating when it is a good time to sell.

 Early attempts to use GP in technical trading analysis were by Chen and Yeh
(1996) and Allen and Karjalainen (1999). However, although GP could produce
profitable rules for the stock exchange markets, their performance did not show
any benefit when compared to the standard buy-and-hold approach. ‘Buy-and-
hold’ simply means, for a given period, buying the stock at the beginning of the

16

period, and selling at the end – hence, always a good idea in a market that gener-
ally moves up during the period.

More recent applications of GP in this context have been more encouraging
(Marney et al, 2000; 2001; Neely, 2001). We will look in particular at Becker &
Seshadri’s work (2003a; 2003b; 2003c) which found GP-evolved technical trading
rules that outperformed buy-and-hold (at least if dividends are excluded from
stock returns). In turm, their approach was founded in Allen & Karjeleinen (1999),
with various modifications. After giving some detail of the overall approach, we
summarise from further experiments from Lohpetch & Corne (2009; 2010) that
probed certain boundaries of the technique and examined its robustness.

Becker & Seshadri’s approach to evolving trading rules

Becker & Seshadri (2003a; 2003b; 2003c), based on Allen & Karjeleinen (1999)
used a fairly standard GP approach and found rules that significantly outperformed
buy-and-hold on average over a 12-year test period of trading with the Standard &
Poors (S&P500) index. Their GP’s function set contained the standard arithmetic,
Boolean and relational operators, and the terminal set included some basic techni-
cal indicators. An example of a specific rule found by their method is in Figure 5.

Figure 5. Example of a trading rule found by Becke & Seshadri’s GP approach.

The rule in figure 5 has the following basic interpretation “ the 3-month mov-

ing average (MA-3) is less than the lower trend line (t) and the 2-month moving
average (MA-2) is less than the 10-month moving average (MA-10) and the lower
trend line (t) is greater than the second previous 3-month moving average maxima
(MX-2)” . This signals trading behaviour in the following way: If the trader is cur-
rently out of the market (no stocks invested in the S&P500), and the rule evaluates
to true, then buy; if the trader is currently in the market, and the rule becomes

17

false, then sell.. This procedure assumes a fixed amount to invest (e.g. $1,000)
whenever there is a buy signal.

In the remainder of this subsection we explain the approach in more detail,
and try to emphasise the key points that are necessary to replicate similar perform-
ance. In passing we note the main ways in which Becker & Seshadri modified the
original approach of Allen & Karjeleinen. These were: monthly trading decisions
rather than daily trading; a reduced function set in the GP approach; a larger ter-
minal set in the GP approach (with more technical indicators); the use of a com-
plexity-penalising element to avoid over-fitting; and finally, modifying fitness
function to consider the number of periods with well-performing returns, rather
than just the total return over the test period. In combination, these methods en-
abled Becker & Seshadri to find rules that outperformed buy and hold for the pe-
riod they tested, when trading on the S&P500 index. It is an open question as to
which modifications were most important to this achievement, however Lohpetch
& Corne (2010) begins to answer that question, as we will see, by showing (as is
intuitiely the case) that it is increasingly easier to find good rules as we change the
trading interval from daily to weekly, and then to monthly.

In the following, we exclusively use S&P500 data (as did Allen & Kar-
jeleinen (1999) and Becker & Seshadri (2003a; b; c); so, our ‘portfolio’ is the
fixed set of 500 stocks in the S&P500 index, which, aggregate to provide daily
price indicators.

Function and Terminal Sets used by Becker & Seshadri

In Becker & Seshadri’s GP approach, the function set comprises simply the Boo-
lean operators and, or and not, and the relational operators > and <. The terminal
set comprises the following, in which ‘period’ was always month in Becker & Se-
shadri’s work, but later we discuss Lohpetch & Corne (2010) in which it could be
day, week or month in different experiments.

• opening, closing, high and low prices for the current period;
• 2,3,5 and 10-period moving averages;
• Rate of change indicator: 3-period and 12-period;
• Price Resistance indicators: the two previous 3-period moving average

minima, and the two previous 3-period moving average maxima;
• Trend Line Indicators: a lower resistance line based on the slope of the

two previous minima; an upper resistance line based on the slope of the
two previous maxima.

The n-period moving average at period m is the mean of the closing prices of the n
previous months (included m). The n-period rate of change indicator measured at
period m is: (c(m) −c(m−(n−1))×100)/c(m−(n−1)), where c(x) indicates the closing
price for period x. Previous maxima MX1 and MX2 are obtained by considering
the 3-period moving averages at each point in the previous 12 periods. Of the two
highest values, that closest in time to the current period is MX1, and the other is

18

MX2. the two previous minima are similarly defined. Finally, to identify trend line
indicators, the two previous maxima are used to define a line in the obvious way,
and the extrapolation of that line from the current period becomes the upper trend
line indicator; the lower trend line indicator is defined similarly, using the two pre-
vious minima.

Becker & Seshadri’s Fitness Function

The fitness function has three main elements. First is the so-called ‘excess return’,
indicating how much would have been earned by using the trading rule, in excess
of the return that would have been obtained from a buy-and-hold strategy. The
other elements of the fitness function were introduced by Becker and Seshadri to
avoid overfitting. These were: a factor that promoted fitness for trading rules that
were less complex (e.g., with reference to figure 5, a less complex rule is one in
which the tree has smaller depth); and, a factor that considered ‘performance con-
sistency’ (PC), favouring rules that generally were used often, each time providing
a good return, rather than rules that were very fortunate in only brief periods.

In more detail, the excess return is simply bhrrE −= , where r is the return on

an investment of $1,000, and rbh is the corresponding return that would have been
achieved using a buy and hold strategy. To calculate r, Allen & Karjeleinen (1999)
and Becker & Seshadri (2003a; b; c) used:

)
1

1
ln()()()(

11 c

c
ntItrtIrr

T

t
sf

T

t
bt +

−++= ∑∑
==

in which: 1loglog −−= ttt PPr , indicating the continuously compounded re-

turn, where Pt is the price at time t. The term Ib(t) is the buy signal, either 1 (the
rule indicates buy at time t) or 0. The sell signal, Is(t), is analogously defined. So,
first component gives the return on investment from the times when the investor is
in the market, and the second component, rf(t) indicates the risk-free return which
would otherwise be available, which is taken for any particular day t from pub-
lished US Treasury bill data (these data are available from
http://research.stlouisfed.org/fred/data/irates/tb3ms). The second component there-
fore represents time out of the market, in which it is assumed that the investor’s
funds are earning a standard risk-free interest. Finally, the third component is a cor-
rection for transaction costs, estimating the compounded loss from the expenditure
on transactions; a single transaction is assumed to cost 0.25% of the traded volum –
e.g. $2.50 for a transaction of volume $1,000. The number of transactions actioned
during the period by the rule is n.

The second main part of the fitness function, rbh, is calculated as:

)
1
1

ln(
c

c
rr tbh +

−+=∑

in which rt is as indicated above. This calculates the return over the period from
risk-free investment in US Treasury bills, involving a single buy transaction.

19

 Becker & Seshadri’s complexity-penalising adjustment works as follows:
Given a rule that has depth depth and fitness value (excess return) f, the adjusted
fitness becomes 5f/max(5,depth). This involves the constant 5 as a relatively arbi-
trary desired maimal depth, and in the trading rule evolution context, there has been
little paramertic investiagtion around this value so far. The other of Becker & Se-
shadri’s modification to the excess return fitness function, Performance Consis-
tency (PC) works as follows. The excess return E is calculated for each successive
group of K windows of a certain length covering the entire test period.

The value returned is simply the number of these periods for which E was
greater than both the corresponding buy and hold return (from investing in the in-
dex over that period) and the risk-free return during that period. For example, if the
rule is evaluated over a 5 year test period, the PC version of the fitness function
might use 12-month windows. Clearly there are five such windows in the test pe-
riod, and the fitness value returned will simply be an integer between 0 (the rule did
not outperform buy and gold and risk-free investment in any of the five windows)
and 5 (the rule was more successful than both buy-and-hold and risk-free return in
all of the windows).

At last, the above background enables us to state the fitness function used (with
minor variations in each case) in Becker & Seshadri (2003a; b; c) and Lohpetch &
Corne (2009; 2010). The fitness of a GP tree of depth d in these studies was the
performance-consistency based fitness (i.e. a number from 0 to X, where there were
X windows covering the test data period), adjusted to penalise undue complexity in
by 5f/max(5,d), in which f is the number of the X windows in which both the corre-
sponding buy and hold return and the risk-free return were outperformed by the
rule.

Some illustrative results

We report here some results that show how this approach performs on various win-
dows of time when trading with the S&P500 index. The results we show are some
of those from Lohpetch & Corne (2010), and the subset of those that were obtained
under the same test conditions as used by Becker & Seshadri (i.e. monthly trading
for a specific training and test window) are quite indicative of Becker & Seshadri’s
own results. However, it is worth first discussing some fruther details of the way
that the genetic programming method was set up for the experiments.

Although perhaps not always the case, it seems that the precise choice of
mutation and crossover methods makes little real difference in this application; the
chance of evolving effective trading rules seems clearly related to a good choice of
function and terminal sets for the expression trees, as well as a wise choice of fit-
ness function. Although, as we will see later, the frequency of trading is a signifi-
cant factor. Meanwhile, Lohpetch & Corne (2009; 2010) used standard mutation
operators, as described by Angeline (1996), namely grow, switch, shrink, and cycle
mutation, and used standard subtree-swap crossover (Koza, 1992). Finally, we note
that, in the experiments whose results we summarise next, the population was ini-
tialized by growing trees to a maximum depth of 5, however no constraint was
placed on tree size beyond the initial generation, other than the pressure towards
less complex trees which is a part of the fitness function.

20

We can now show some results that indicate the performance achievable
by such a GP system as described in the last section. In the experiments summa-
rised here, from Lohpetch & Corne (2009; 2010), a population size of 500 was
used, and other relatively standard GP settings, with a run continued for 50 genera-
tions. Here we show results for each of daily, weekly and monthly trading, and we
find that outperfomance of buy-and-hold can indeed be achieved even for daily
trading, but as we move from monthly to daily trading the performance of evolved
rules becomes increasingly dependent on prevailing market conditions. The data
used is the S&P500 index from 1960 onwards. In Becker & Seshadri’s demonstra-
tion of outperforming buy-and-hold, only monthly trading was used, and their re-
sults arise from training the rules over the1960—1991, and evaluating them on a
test period spanning 1992—2003. This corresponds to “MonthlySplit1” in the fol-
lowing, however it is clear from Lohpetch & Corne (2009) that more robust per-
formance is obtained when a validation period is used. The following illustrative
results therefore reflect a training/validation/test regime in which the GP training
run evaluated fitness on the training period only, but the rule that achieved the best
performance on a validation period was harvested, and this was the rule evaluated
on the test period.

Results for four different monthly trading data splits are summarized below.
The splits themselves are as follows, in which N gives the length of the validation
period in years, immediately following the training period, and K gives the length
of the test period in years, again immediately following the validation period.

• MonthlySplit1: 31 yrs training; N=12, K=5
• MonthlySplit2: 31 yrs training, N=8, K=8
• MonthlySplit3: 31 yrs training, N=9, K=9
• MonthlySplit4: 25 yrs training, N=12, K=12

Corresponding splits for the weekly and daily trading experiments are also su-
marised here very briefly (for details see Lohpetch & Corne (2010)). Four different
weekly trading and daily trading data splits were also investigated, roughly corre-
sponding to the monthly data splits in terms of the number of data points in each
split. E.g. WeeklySplit1 involved 366 weks trading, 158 weeks validation and 157
weeks testing. Similarly, the training periods for the daily splits were approxi-
mately one year in length. The four different weekly and daily splits started at dif-
ferent times spread evenly between 1960 and 1996.

Figure 6 shows the four Monthly data splits aligned against the S&P 500
index for the period 1960—2008. Note that the market movements were net posi-
tive in each part of each split, indicating that outperforming buy-and-hold was in all
cases a challenge.

21

Figure 6. The S&P500 index over the period 1960—2008, illustrating the four data splits
for the case of monthly trading.

In Lohpetch & Corne’s experiments (2010), they also explored different lengths
of window for the Performance Consistency element of the fitness function. In
Becker and Seshadri’s work, the Performance Consistency approach clearly results
in improved performance, however they only reported on the use of 12-month win-
dows. Lohpetch & Corne experimented with different lengths for these windows
for each trading situation, namely: 6, 12, 18 and 24 months periods for monthly
trading; 12 and 24 weeks for weekly trading, and 12 and 24 days for daily trading.

For each trading period (monthly, weekly, daily), Lohpetch & Corne did 10
runs for each combination of data split and consistency of performance period. The
outcome of the 10 runs is summarised in Tables 1—3, simply as the number of
times that the result outperformed buy-and-hold.

Table 1. Summary of results for monthly trading

Data split PC
Period

Trials
outperforming
buy-and-hold.

PC
Period

Trials outperforming
buy-and-hold.

Monthly Split1 6 10 out of 10 12 10 out of 10

Monthly Split2 6 9 out of 10 12 10 out of 10

Monthly Split3 6 10 out of 10 12 9 out of 10

Monthly Split4 6 10 out of 10 12 10 out of 10

Monthly Split1 18 10 out of 10 24 10 out of 10

Monthly Split2 18 8 out of 10 24 10 out of 10

Monthly Split3 18 8 out of 10 24 7 out of 10

Monthly Split4 18 10 out of 10 24 10 out of 10

 1965 1970 1975 1980 1985 1990 1995 2000 2005

22

As Table 1 shows, monthly splits 1 and 4 were clearly well-disposed to good
performance, but performance was also rather robust on the other monthly splits.
Note that outperforming buy and hold would seem to be more likely, according to a
priori intuition, when the performance of buy-and-hold in the test period is rela-
tively weak, but this is not the case for Monthly splits 1 and 4 (see Figure 6). The
results are quite impressive from many points of view. In many cases, ten tests out
of ten showed that a simple trading rule evolved by genetic programming was able
to outperform buy-and-hold in an upwardly moving market.

Table 2. Summary results for weekly trading

Data split PC
Period

Trials
outperforming
buy-and-hold.

PC
Period

Trials outperforming
buy-and-hold.

Weekly
Split1 12

2 out of 10
24

7 out of 10

Weekly
Split2 12 10 out of 10 24 5 out of 10

Weekly
Split3 12 4 out of 10 24 4 out of 10

Weekly
Split4 12

10 out of 10
24

10 out of 10

Table 2 shows the results, summarized in the same way, for the case of weekly

trading, and Table 3 presents the corresponding results for the case of daily trading.
These clearly show increasingly less robust results. It certainly seems that this rela-
tively straightforward GP method can find robust rules for weekly trading that out-
perform buy-and-hold in some circumstances (splits 2 and 4), with less reliable per-
formance in other cases. However, Lohpetch & Corne (2009; 2010) were not able
to discern any pattern that explains this from analyses of the data splits. Finallly, for
daily trading, Table 3 shows that outperforming buy-and-hold is less likely, with
strong performance in only one of the four data splits, and very poor performance
in two of the data splits.

Table 3. Summary of results for daily trading

Data split PC
Period

Trials
outperforming
buy-and-hold.

PC
Period

Trials outperforming
buy-and-hold.

Daily
Split1 12

0 out of 10
24

0 out of 10

Daily
Split2 12 0 out of 10 24 0 out of 10

Daily
Split3 12 10 out of 10 24 9 out of 10

Daily
Split4 12

2 out of 10
24 4 out of 10

23

A Brief Discussion

The investigation of genetic programming in financial applications, and in particu-
lar the use of it to discover technical trading rules, remains an active thread of re-
search in both industry and academia. In the published academic research, it was
commonly found in earlier studies that rules found by genetic programming were
profitable, but usually not competitive with straightforward “buy and hold” strate-
gies. However, as we have seen, the situation is changing and it now seems that
progress is being made in finding ways to use genetic programming to produce ef-
fective and interesting rules that might be used by individual traders. There are sev-
eral caveats, and of course this enterprise is only one thread of work in a wide area
that also involves natural language understanding and many other areas of machine
learning (for example, to spot ideal trading opportunities based on the latest online
news). However this work represents another example of the way in which natural
computation can help us generate strategies for complex situations which are com-
petetive with those we design ourselves.

We should also note that the approach described in this section is far from the
last word in the application of genetic programming to the specific area of technical
trading. We have taken pains to describe a classic approach, and shown that it can
indeed find robustly profitable trading rules under a range of conditions – however
several more sophisticated ways to use GP in this area also exist. For example,
rather than simply evolve a single rule that encapsulates both a buy and sell signal,
different rules can be evolved separately for buying and selling. Also, we note that
interested researchers may pick up code for evolving technical trading rules (writ-
ten by Dome Lohpetch) from the following site:

 http://www.macs.hw.ac.uk/~dwcorne/gptrcode/.
It is also worth mentioning alternative directions which attempt to gain on

buy-and-hold by including risk metrics in the rules (or in their evaluation). Typi-
cally, a risk measure such as the Sharpe ratio (Sharpe, 1996) is used to normalize
the estimate of financial return, effectively downgrading the performance of rules
that promote trading in volatile conditions, promoting rules more likely to be ap-
plied by investors. For example, in attempting to build on work by Fyfe et al
(1999), Marney et al (2000; 2001) included the use of metrics for calculating risk,
although still did not outperform buy-and-hold. More recently, Marney et al
(2005) used the Sharpe ratio and found that a technical trading rule that easily out-
performed simple buy and hold in terms of unadjusted returns, but not in terms of
risk-adjusted returns. There is clearly much work still to do until techniques exist
in the research literature that can robustly outperform buy-and-hold in a way that
satisfies risk-conscious traders, although the progress and effort in this direction
makes it clear that this will be achieved, as well as suggesting that private and un-
published research in commercial organizations has almost certainly achieved this
already with appropriate use of genetic programming and similar technologies.

24

3. Examples of Natural Computing’s ‘Outreach’ elsewhere in
Science and Engineering

In this section we select two areas of natural computation which have wider impli-
cation for significant areas of science and technology. Mostly, an application of a
natural computing technique may produce excellent results in its domain, and the
impact of those results, though potentially significant, tend to remain solidly
within that domain. Progress in general financial mathematics, for example, will
not be revolutionised by the trading application we discussed in section 2. How-
ever, sometimes an exemplar application will open up previously unconsidered
possibilities in a whole subfield of science. In this section we discuss two exam-
ples in which we can see such broader consequences. The first is the use of
(mostly) multi-objective evolutionary computation in the area of closed-loop op-
timisation, in order to optimise a range of processes and products in the biosci-
ences, process industries and other areas. In this arena, evolutionary computing
was never an `obvious’ technique to try, given the potential cost in time, however
it’s use has time and again proven worthy, and this in turn leads directly to better
and faster processes and products emerging from, for example, the use of the in-
struments that have been configured via evolutionary techniques. The second exe-
ple area we look at in this section is the concept of innovization, which exploits
multi-objective evolutionary computation in a way that leads to generic design in-
sights for mechanical engineering (and other) problems. In multi-objective prob-
lems (see Deb, 2001; Corne et al, 2003) the result of solving the problem is a (usu-
ally) large collection of diverse solutions, each optimal in a sense, but traversing a
Pareto surface of optimal from (for example) highly reliable and high cost solu-
tions to exceptionally cheap but less reliable ones. The notion of innovization is to
exploit the prowess of evolutionary computing in obtaining such a diverse set, by
further analysing this collection of designs to find, as it turns out, previously un-
known generic design rules which seem to be true of all ‘optimal’ designs, wher-
ever they sit on this Pareto surface. A well designed natural computing approach
to a specific problem in mechanical engineering, for example, thereby leads to
new design principles that can have much wider impact than simply solving the
given problem.

3.1 Applications in Analytical Science: Closed-Loop
Evolutionary Multiobjective Optimization

Knowles (2009) provides a detailed and comprehensive summary of historical ori-
gins and current work in the broad area of closed-loop optimisation using evolu-
tionary multiobjective algorithms. We provide a similar but more brief treatment

25

here, including a summary of two of the several interesting modern case studies
covered in Knowles (2009).

As Knowles (2009) points out, the idea of using an evolution-inspired
technique for producing solutions to optimization problems has been explored for
around 60 years so far, starting in the 1950s. The celebrated British statistician
George E.P. Box used the term ‘closed-loop’ in describing the kind of evolution
experiments that were first investigated, while Ingo Rechenbrg (a pioneer in evo-
lutionary computation) used the phrase ‘evolutionary experimentation’. In closed-
loop evolution-inspired optimisation, the evolution process is a combination of
computation and physical experiment. The evaluation of candidate design solu-
tions is done in the real world by conducting physical experiments. Much of the
pioneering work in evolutionary computation (by Rechenberg and his team) was
of this kind. In much more recent times, the closed-loop approach has been used,
commonly with much success, in evolvable hardware research (see chapter in this
volume), in evolutionary robotics research, as well as in microbiology and bio-
chemistry. In this section, some brief example case studies are described, to illus-
trate the increasingly wide emerging impact of this technique at the evolu-
tion/engineering interface.

With a focus on closed-loop evolutionary multiobjective optimization
(CL-EMO) in particular, we look at two cases (i) instrument optimization in ana-
lytical biochemistry; (ii) on-chip synthetic biomolecule design; these are described
in greater detail in Knowles (2009) as well as further references detailed later, and
along with other quite different examples. However, before these case notes, we
will briefly look at the historical development and fundamental concepts in
closed-loop optimization and CL-EMO.

Historic Highlights in Closed-Loop Optimization

In Berlin in the 1960s, Rechenberg, Schwefel, and Bienert conducted a series of
studies in engineering and fluid dynamics, in which they tested the idea of using a
process inspired by evolution to search for new and successful designs. Their
work clearly demonstrated that complex design engineering problems (including:
the optimal shape of a fluid-bearing pipe, and the design of a supersonic jet noz-
zle) could be addressed in this way with rampant success (see Chapter 8 of Fogel
(1998), as well as Rechenberg (1964; 2000). The design process itself was found
to be efficient and scalable, and the results were highly effective. Rechenberg and
his team were using an early example of an evolutionary algorithm, but in which
only the selection and variation steps were done by a microprocessor; the rest, the
evaluation of candidate designs, was done by constructing prototype designs and
performing experiments to test their properties. Innovative solutions were found
to all of the engineering design problems that they studied.

Pre-dating Rechenberg’s work, a similar principle was used by George Box,
who introduced ‘evolutionary operation’ (EVOP) in 1957. This was also an ex-

26

perimental method of optimization, which Box (1957) envisaged being used regu-
larly in factories and similar processing facilities. Box’s ‘closed-loop’ scheme in-
volved some human input, and was somewhat more deterministic than the ap-
proach taken in Berlin, but, just as Rechenberg’s work, was inspired by principles
from natural evolution. Box’s methods were both successful and very influential
(Hunter & Kittrell, 1966), remaining in use today. Meanwhile, the work of Re-
chenberg’s team was the beginning of the field of evolution strategies, one of the
foundation stones of the current field of evolutionary computation.

Since these early studies, however, evolutionary computation as a whole has
largely been concerned with entirely in silico optimisation. The great majority of
growth in this research area, as well as in industrial practice, concerns applications
that involve convenient and entirely computational estimations of the fitness of
computational abstractions of solutions. This is fine for a vast collection of scenar-
ios, but there remains a need – in fact a quickly expanding one – for applications
in which it makes sense for designs to be realised and evaluated physically
throughout the simulated evolution process.

Research in evolvable hardware shows that, if the evolution processs is given
direct access to a complex physical structure, designs can be evolved that use en-
tirely different proinciples than would be used by human designers, often exploit-
ing aspects of the physics of the structures involved that are unfamiliar to human
experts, or simply too difficult to use as part of the design process. Thompson &
Layzell’s work with Field Programmable Gate Arrays is exemplary of this.
Meanwhile, evolutionary robotics projects have often relied upon the controllers
being evolved in real time within physical robots, while they are performing real
tasks in a real environment (Nolfi & Floreano, 2004; Trianni et al, 2006). The
benefits of such evolution experiments, exposed to and exploiting the true physics
of the designs being evolved, are not just confined to evolutionary robotics, e.g.
Davies et al (2000), Evans et al (2001).

Later, we describe three further and recent uses of closed-loop evolutionary op-
timization, from recent work in which the third author (JDK) has been involved.
Each is a scenario where direct experimental evaluation of solutions is either the
only option or is clearly preferable to simulation. Also they each involve multiob-
jective evolution, a notable advance of the last twenty years (Fonseca & Fleming,
1995; Coello, 2000; 2006; Deb, 2001; Corne et al, 2003) which was not available
to Box or Rechenberg. One of the several benefits of a multi-objective approach in
these scenarios is that the different design objectives may simply be stated, with-
out any need to define normalizations, weights or priorities that mangle them into
a single scalar (and usually misleading) measure of quality.

At this point, it is worth noting that there is widespread use of certain statistical
methods in industry, for the types of problems that we are considering in the
‘closed loop’ setting. The techniques employed are referred to as design of ex-
periments (DoE) approaches, or sometimes experimental design (ED) based ap-
proaches (Fisher, 1971; Chernoff, 1972; Myers & Montgomery, 1995; Box et al,
2005). Such methods emphasise rational reasoning from all the information ob-
tained so far, as opposed to more randomized exploration. Standard DoE is typi-

27

cally used for probing low-dimensional parameter spaces using few experiments,
while evolutionary algorithms are typically used for optimization in high-
dimensional spaces, using many evaluations, and optimize many different types of
structure, including permutations, graphs, networks, and so on. However, there is
an increasingly disappearing divide between the two types of approach, especially
since the advent of sequential DoE, which incorpates aspects of evolutionary
computing. The closed-loop optimization scenarios considered in this section lie
between these niches, and benefit from aspects of both approaches.

Fundamentals of Closed-Loop Evolutionary Multiobjective Optimiza-
tion

In closed-loop EMO, candidate solutions to a problem are generated by an algo-
rithm in computer simulation, but their evaluation is achieved by physical experi-
ment. Evaluations are fed back to the algorithm and its generation of subsequent
solutions is a function of these. Thus the process has the form of a closed loop, be-
ing at least partially sequential. Closed-loop problems can be defined generally as
multiobjective optimization problems in which, essentially, we need to find some
ideal solution vector x, which simultaneously minimizes each of a collection of k
objective functions f1(x), f1(x), … fk(x). Typically, a single physical experiment
g(x) yields the k measurements f1(x), f1(x), … fk(x). That is, the k objectives are k
different measurements that are made as the result of a single experiment, all of
which we need to optimize in some way. Typically, at least some of the objectives
will be in conflict (Brockhoff & Zitzler, 2006), and no single solution is a mini-
mizer of all functions. Rather, the improvement of one objective is only possible
by sacrificing, or trading off, quality in some other objective. The solutions corre-
sponding to optimal values of the k objectives are known as the Pareto set, and
when plotted in objective space, form the Pareto front (see Figure 7).

28

Figure 7: An illustration of a Pareto front for a typical optimization problem with two ob-
jectives,both of which have to be minimized. Eacg of the solutions on the Pareto Front (PF)
are optimal in the Pareto tradeoff sense. E.g. for any solution on the PF, no silution exists
which is improved in one objective without being degraded on another objective. Often,
some solutions on PFs are ‘unsupported’ – these are valid optimal solutions in the Pareto
tradeoff sense, but for any linear combination of the objectives that might be used in a sin-
gle-objective simplification of the problem, they would not be optimal.

 Since solving such a vector optimization problem usually leads to a set of solu-

tions, rather than a single one, there is, in most practical applications, a need for
decision making to select one solution from this set. This aspect of multi-objective
optimization is important and well-studied (Fonseca & Fleming, 1998; Miettenen,
1999; Branke & Deb, 2005, and we will not cover the various alternative ap-
proaches here. Suffice to say that in the experiences detailed later, the EMO algo-
rithms were designed to find whole Pareto fronts, with the expectation that a hu-
man decision maker would make the final decision using the information
incorporated in the output Pareto front.

Example 1: Instrument Optimization in BioAnalytical Chemistry

Modern biotechnology and bioanalytics often involves large-scale experiments
which impose heavy demands on sophisticated laboratory instruments. To achieve
timely throughput, these experiments often necessitate using configurations of in-

Objective 1

Objective 2
Solutions on the
Pareto front

Unsupported solutions
(in a concave region)

Dominated solutions
 (not on the Front)

29

struments that go beyond the manufacturer’s recommended settings. This situation
happened in the ‘HUSERMET’ project, which was a collaboration between sev-
eral UK health authorities, two pharmaceutical companies, and the University of
Manchester, undertaken between 2006 and 2009 (www.husermet.org). In this pro-
ject, human blood samples were collected from around 2000 people over a three
year period, with te aim of understand ovarian cancer and Alzheimer’s disease in
terms of the variations in metabolites (the chemical products of metabolism) pre-
sent in patients suffering from, or free from, these diseases. The samples were ana-
lysed with the help of various modern technologies for characterizing complex
samples, including laboratory instruments that performed gas-chromatography
mass spectrometry. The configuration of such instruments is always subject to a
degree of optimization in order to ensure that the analytes being detected can be
seen, with maximal sharpness and minimal noise. This optimization is usually
(though not always) ad hoc, subject to much domain knowledge.

In the HUSERMET project, the need for a better instrument configuration op-
timization process arises from: the unusually large number and diversity of me-
tabolites to be detected (aound 2,000), the potential to vary around 10 interacting
instrument parameters, and the significantly conflicting nature of the optimization
objectives. Instrument settings were needed that allowed fast processing of sam-
ples (preferably well under an hour), which conflicts with the desire to maximize
the detection of the full complement of metabolites at low noise.

 Optimizations of two instruments have been reported in detail in O’Hagan et
al, 2005; 2007), respectively. The former study successfully used the evolutionary
multiobjective algorithm PESA-II (Corne et al, 2001), but that study also directly
inspired the development of the ParEGO algorithm (Knowles, 2006), a multiob-
jective algorithm that is a hybrid of a surrogate modeling approach and an evolu-
tionary algorithm. ParEGO was then used in the second study successfully, and
settings derived from the evolutionary algorithms in both cases were subsequently
used for the instruments to process the tasks of the HUSERMET project.

The major challenge in that project was the limited number of function evalua-
tions that could be done. A function evaluation ties up an expensive instrument for
an appreciable time, when it could otherwise be used more directly furthering the
project’s needs. This was even more bothersome, given the need to try to optimize
three objectives simultaneously (chromatogram peaks, signal/noise ratio and sam-
ple throughput). Only one instrument was available, and a single analysis of a se-
rum sample takes between 15 minutes and over an hour. The optimization process
used 400 evaluations in total, with the EAs controlling the instrument settings and
loading samples through a robotic interface that was designed especially for the
optimization process. In figure 8 we can see some chromatograms, which indicate
the instrument’s performance characteristics before (upper) and after (lower) op-
timization. The optimized result achieved approximately three-fold increases in
the quantity of peaks visible, whilst at the same time maintaining the signal/noise
ration at low levels, and achieving throughput of samples in around 20 minutes.

30

Figure 8: Chromatograms indicating detection performance of the instrument op-
timized in the HUSERMET project. (a) from the initial generation of search; (b)
towards the end of the search process. In (b), both the number of peaks and the
range of retention times over which peaks are detected have improved, while
maintaining noise at low levels.

31

Example 2: Evolving Real DNA on Custom Microarrays

Another example covered in more detail in Knowles (2009) concerns the design of
pharmacologically-active, highly-targeted macromolecules. This is a significant
goal in modern medicine, especially in the context of ab initio design, where we
seek a molecule with specific properties and activity, but have little or nothing to
go on (in the sense of existing molecules with similar properties). In recent re-
search, novel microarray-based technology has been used in the automation of
such ab initio molecule design. Experimental biotecthnology platforms are now
available which can synthesise, and then experimentally test in a variety of ways,
any specifed DNA sequence. Being able to synthesize any given sequence, and
subject it various tests, means there is far less need for computational models
which, in the current state of the art, are far from good enough (or fast enough) to
support such a process.

 The microarray used in the work described next (and more fully in Knowles
(2009) and references therein) is the so-called CustomArray technology, available
from Combimatrix Corp, which can be used to synthesise up to 90,000 specific
bespoke DNA sequences of up to 40 bases lomg in a single experiment. Once the
sequences have been synthesized. they can be tested for a variety of properties, but
usually the main property of interest is the ability to bind to a particular target
molecule. In the testing (or assay) process for binding ability, the chip holding the
sequences is ‘washed’ with a solution containing the target molecule, and some
form of fluorescent tagging is used so that binding can be observed; further auto-
mated processes can then estimate the strength of binding.

Short strands of DNA (or RNA), which bind strongly to specific targets are
called aptamers, and hundreds of these have been developed for a wide variety of
applications. Before the recent microarray-based work at Manchester (which is
what we are discussing here, with full details in Knight et al (2008)), new aptam-
ers were almost always discovered by a method called SELEX (Tuerk & Gold,
1990), or in vivo selection, in which the DNA strands are evolved in a test tube by
repeated rounds of high-pressure selection and random mutation. As indicated,
however, in the microarray approach we know precisely the sequence information
for every sequence tested, and can even exactly specify mutations or other varia-
tions to perform. This is not the case in SELEX, and one of the many benefits for
the microarray approach is that it allows extremely richer possibilities for borrow-
ing and exploiting algorithms from evolutionary computation, machine learning
and statistics.

Knight et al (2008) reports the first use of an evolutionary algorithm to produce
a DNA aptamer on the B3 Combimatrix platform. This happened after ten genera-
tions of evolution, eventually discovering several 30-base long strands that bound
very strongly to the target molecule, allophycocyanin. The work in Knight et al
(2008) used a DNA chip that could hold 6,000 strands. With 90,000 strands on a

32

chip now possible in more modern technology, one main challenge (from the op-
timization perspective) is to determine the best way to exploit such massive popu-
lation sizes. Wedge et al (2009) have recently explored such questions in in silico
simulations using contrived search landscapes, as well as real trials on the DNA
landscape, revealing, among other findings, that higher than standard mutation
rates consistently outperformed a range of other setups. This echoes findings in
Corne et al (2003b), which also explored large population sizes and contrived in
silico landscapes, partly to inform the (as then) emerging field of closed loop pro-
tein evolution.

Some Concluding Notes on CL-EMO

For the examples described above, and several more in which CL-EMO has been
used, building accurate computational models that could usefully replace real ex-
periments is practically infeasible. The closed-loop alternative offers a more effi-
cient and effective way towards the discovery of innovative solutions, easily mak-
ing up for the time and expense of tying down the physical kit for the
experimental period. One question often worth asking, however, is whether we
need to automate the optimization process at all in such scenarios. There is a proc-
essing step in which a computational process (here, e.g. an evolutionary multiob-
jective optimization algorithm) considers the latest experimental evaluation re-
sults, and outputs sample designs for the next sequence of physical evaluations –
but this operation could easily be done instead by a domain expert. On the other
hand, though, there are several objections to such human involvement: even ex-
perts can over-interpret results that are affected by noise or similar factors; simi-
larly, humans are very prone to reason on the basis of simple models, ignoring in-
teractions between parameters. Meanwhile there is always a very real danger of
experts preferring solutions that are (or are close to) known designs.

 Problems where accurate computer modeling is infeasible, and for which
closed-loop optimization is the efficient solution, are really quite common. For the
moment, the main focus of the third author is on problems in modern biology,
where there is a growing take-up of multiobjective optimization. Meanwhile,
many other substantial areas are able to benefit greatly from CL-EMO; apart from
drug discovery and development, large-scale problems such as flood defence de-
sign, forest fire control strategies, the location of renewable energy plants, and the
task of genetically engineering more pest-resistant food crops and energy crops,
can all be seen, to varying degrees, as closed-loop problems.

33

3.2 Innovization

In this section we describe a new idea, innovization, introduced in Deb & Sriniva-
san (2005; 2006), which (typically) exploits multiobjective evolutionary computa-
tion to find new and innovative design principles. Although optimization algo-
rithms are routinely used to find an optimal solution corresponding to an
optimization problem, the task of innovization stretches the scope beyond an op-
timization task and attempts to unveil new and innovative design principles relat-
ing to decision variables and objectives, so that a deeper understanding of the
problem can be obtained.

Innovation is a common goal for engineers and designers, but there are actually
very few (arguably no) systematic procedures for reliably achieving innovations.
Goldberg (2002) however suggests that a ‘competent’ genetic algorithm can be an
effective way to achieve an innovative design (and indeed there are numerous ex-
amples of innovative designs being discovered by evolutionary computation, in-
cluding some discussed elsewhere in this chapter). However, the idea of innoviza-
tion (Deb & Srinivasan, 2005; 2006) extends this argument considerably, and
gives a systematic procedure that can arrive at a deeper understanding of a given
engineering design problem. This systematic procedure may lead to the discovery
of new design principles – in particular, principles which are common to the di-
verse collection of optimal trade-off solutions. Such common principles may in
many cases provide a reliable recipe for solving given instances of the problem at
hand. In this section we will explain the innovization procedure, and illustrate it
with two examples in engineering design. The material in this section borrows
much from Deb & Srinvasan (2005), which intrdocued this idea, and contains sev-
eral more examples. However, before looking at the procedure and examples, it
will be helpful to recall some basics about the usually conflicting nature of objec-
tives in the design process.

Multiple Conflicting Objectives in Design

The central idea in innovization involves the presence of at least two conflicting
objectives for the design problem at hand. This is far from a limiting constraint –
as argued in many places (see in particular Corne et al (2003) for an introductory
account of this argument), almost all realistic problems naturally involve several
objectives.

Consider a typical design problem with two or more conflicting goals, such as
an engine or generator whose mass needs to be minimized, but whose output
needs to be maximized. Such a two-objective optimization task results in a set of
Pareto-optimal solutions (see Figure 7). One of the ‘extreme’ solutions will be the
best if we are only interested in mass, while the other extreme solution will be
ideal for the output consideration, and there will usually be several solutions inbe-

34

tween these extremes, also optimal in a sense, all of which share the property that,
if they are better than another Pareto optimal solution in one objective, they will
be worse in the other. The intermediate solutions are invariably good compromises
within the extremes, and the solution that may eventually be chosen by the de-
signer will often be among these, and its choice will often by helpfully informed
by the knowledge that the designer obtains by viewing the shape and the nature of
the tradeoffs displayed by the entire set of solutions that form the discovered
Pareto front. However, what is of particular interest here is that this set of solu-
tions will typically be very diverse, but all sharing the property of Pareto optimal-
ity. The idea of innovization arises from the attempt to see whether this property
of Pareto-optimality, for any given problem, is manifest in concrete features that
the diverse solutions share. Another aspect of this is that the process of obtaining
such a wide variety of solutions is itself a significant investment in computation
time; innovization is a way to exploit this significant investment by performing a
posterior analysis of the obtained set of trade-off solutions, which may result in a
set of ‘innovized’ principles relating to the given design problem.

 In designing an electrical motor, for example, this posterior analysis might re-
veal a feature of the diameter of a certain component and the power output that is
shared by all of the Pareto-optimal solutions but not other solutions. Any such re-
lationships discovered would clearly be of great importance to a designer, and
perhaps point towards a recipe for future design tasks in the same domain, as well
as spark new theoretical insights into the problem. These are just two of a range of
benefits that so-called ‘innovized principles’ could lead to, as discussed further in
Deb & Srinivasan (2005), along with convincing argument that we can often ex-
pect such principles to exist.

How to Innovize

The innovization procedure proposed by Deb & Srinivasan (2005) consists of two
phases: in the first phase, the idea is to simply try to obtain the Pareto optimal so-
lutions of the design problem in question. In the second phase, they then analyse
the solutions and extract innovized principles. The first phase is not as straight-
forward as it sounds, since, of course, we usually can never guarantee that we
have found true optima for a realistic problem, unless we have performed an ex-
haustive search. However, the idea of the first phase is to do as well as we can in a
reasonable time, since it is expected that the chance of obtaining valid principles
of Pareto-optimality is improved if we have true (or very close to true) Pareto-
optimal solutions. In Deb & Srinivasan’s procedure, this centrally involves mak-
ing use of NSGA-II (Deb et al, 2002) (one of the most prominent and effective
evolutionary multiobjective optimisation algorithms) as the main engine in finding
the Pareto front, but initially informed by a single objective method that has been
used to find the extreme points on the Pareto front, and followed by various appli-
cations of a local search method and the Normal Constraint Method (NCM) (Mes-

35

sac & Mattson, 2004) to locally improve the output solutions from NSGA-II as far
as possible.

The second phase of innovization is then the nalysis of the assumed Pareto op-
timal solutions that emerge from the first phase. There is no fixed recipe for this
process, other than to employ the usual common sense and expertise that under-
pins a data mining and knowledge discovery task in searching for commonality
principles among these solutions that may become plausible innovized relation-
ships. Deb and Srinivasan (2005) also pursue ‘higher level innovizations’ after this
phase, which involve returning to the original problem, but investigating different
areas of the design space by looking at neighbouring problems (e.g. with different
boundaries and constraints on the design task); this then enables new principles to
be discovered that are likely to be at a higher level than previously, mapping de-
sign constraints to design recipes.

We now describe just two from the increasing collection of results of this above
innovization procedure in engineering design applications. These were first de-
scribed in Deb & Srinivasan (2005), among several other examples.

Example 1: Gear Train Design

Deb & Srinivasan (2005) give the example of the design of a compound gear train,
in which a specific gear ratio between the driver and driven shafts is desired. The
problem is illustrated in Figure 9, and is a modification to a problem solved else-
where (Kannan & Kramer, 1994; Deb, 1997). The objective is to set the number of
teeth in each of the four gears in a way that minimizes the error between the ob-
tained gear ratio and a required gear ratio of 6.931:1, while also minimizing the
maximum size of the four gears.

36

Figure 9: A gear train with four gears (circles). The task is to achieve as close as
possible a gear ratio of 6.931:1 between the driver and follower, while minimizing
the sizes of each gear.

The diameter of a gear is proportional to the (integer) number of teeth, so these
objectives can be formalised in terms of four integer decision variables: x = (x1, x2,
x3 x4) referring respectively to the numbers of teeth in gears Td (driver), Tb, Ta and
Tf (follower). The problem is then o minimize both f1 and f2 below:

21

43
1 931.6)(

xx

xx
xf −=

),,max()(43212 xxxxxf =

subject to the following constraints:

60,,12

,5.0
931.6

)(

432,1

1

≤≤

≤

xxxx

xf

The constraints ensure that the difference between the designed gear ratio and the
desired gear ratio is no more than 50%. After phase one of the innovization proce-
dure, a collection of assumed Pareto optimal solutions was obtained. Table 4
shows the two exreme solutions.

Ta

Tb Td

Driver

Tf

Follower

37

Table 4: the extreme solutions obtained for the gear train design problem in Deb &

Srinivasan (2005).

Solution Td Tb Ta Tf f1 f2

Minimum error 20 13 53 34 ~0.00023 53
Minimum maximal gear size 12 12 22 23 3.4171 23

Phase two of the process then revealed several interesting principles relating to the
problem, covering the whole set of Pareto optimal solutions, which we summarise
from Deb & Srinvasan’s account as follows:

First, In order to minimize the maximal gear size, gears Td and Tb need to have
almost the smallest allowable number of teeth. To get as close as possible to the
desired ratio (with error less than 0.1), the Tb and Td values need to grow some-
what, but still remain close to their lower bounds. Another finding is that the
maximum allowed gear size always occurs in a Pareto-optimal solution, either for
Ta or for Tf. It is also noted that two distinct types of solutions emerged: (a) gear-
trains with very low error (very close to the desired gear ratio of 6.931:1), in
which there is a great variety of ways in which the numbers on teeth in the four
gears combine to almost achieve the 6.931 ratio in the first objective; (b) gear-
trains with a comparatively large error, with identical first and second-stage ratios
(except the one with the largest error). Although a large error can happen for many
different combinations of errors in the two stages, the pressure of the second ob-
jective causes both stages of gear-ratios to be identical. Finally, regarding small-
error gear trains, half of them have a larger first stage ratio than second stage, and
half have a larger second-stage ratio.

This is a fairly simple and straioghtforward example, although it brings out
several interesting properties of optimal solutions of this type of gear-train design
problem which are difficult, if not impossible, to infer from the statement of the
problem. One implication, for example, concerning recipes for gear train design, is
that the process could be guided according to how important it is to closely meet
the constraint. If a low error is desired, then it is clearly important to examine
many possible combinations of gear sizes. If a higher error can be allowed, then
solutions with minimal size strongly tend to have equal first-stage and second-
stage ratios.

Example 2: Welded Beam Design

This is a much-studied problem in the context of single-objective optimization
(Reklaitis et al, 1983), in which a beam needs to be welded onto another beam and
must carry a certain load F, as illustrated in Figure 10.

38

Figure 10: the welded beam design problem.

The problem is to establish the four design parameters (beam thickness and width,
respectively b and t, length and thickness of weld, respectively l and h) in a way
that minimises the cost of the beam, and also minimises the vertical deflection at
the end of the beam. The overhanging portion of the beam has a fixed length of 14
inches, and is subject to a force F of 6,000lb. Clearly, an ideal design in terms of
cost will be less rigid and hence not ideal in terms of deflection, and vice versa. A
formulation of this problem (Deb & Kumar, 1995; Deb, 2000) gives the objectives
as follows, where x indicates the vector of design parameters:

bt
xf

lbtlhxf

⋅
=

+⋅⋅+⋅⋅=

32

2
1

1952.2
)(

)0.14(04811.010471.1)(

subject to these constraints:

0.10,1.0

0.5,125.0

6000)(

30000)(

600,13)(

≤≤
≤≤

≥
≥

≤
≤

tl

bh

xP

hb

x

x

c

σ
τ

l F

 h

t

 b

39

The first constraint specifies that the shear stress at the support location is below
the allowable shear stress of the material (13,600 psi); the second ensures that the
normal stress at the same location is below the material’s allowable yield strength
(30,000 psi); the third ensures the obvious practical consideration that the weld is
not thicker than the beam, and the fourth ensures that the applied load F is below
the allowable buckling load of the beam. The highly nonlinear stress and buckling
terms are as follows (Reklaitis et al, 1983):

()

3

2

22

22

2222

)0282346.01(022.64746)(

/504000)(

))2(25.012/(707.02

))((25.0)5.014(6000

2

6000

))((25.0/)()()()(

tbtxP

btx

hlhl

thll

hl

thllx

c −=
=

++
+++

=′′

=′

++′′′+′′+′=

σ

τ

τ

τττττ

Following phase one of the innovization procedure, a set of Pareto optimal solu-
tions was obtained, and Table 5 shows the extreme points of this Pareto set, along
with an interesting intermediate point which Deb and Srinivasan refer to as T,
which comes into the innovized principles discussed next.

Table 5: the two extreme solutions and an interesting intermediate solution T obtained by
Deb & Srinivasan (2005) for the wedled beam design problem. The units of the design pa-
rameters are inches.

Solution h l t b f1 f2

Minimum cost 0.2443 6.2151 8.2986 0.2443 2.3815 0.0157
Minimum deflection 1.5574 0.5434 10.000 5.000 36.4403 0.00044
Intermediate sol’n T 0.2326 5.3305 10.000 0.2356 2.5094 0.0093

Deb & Srinivasan’s analysis of the many Pareto solutions obtained (spread liber-
ally between those shown in Table 5) revealed the following innovized principles:

First, two distinct behaviors were found: from the intermediate transition solu-
tion T (shown in Table 5) towards higher-deflection solutions, the objectives be-
have differently than in the rest of the trade-off region. For small-defllection solu-
tions, the relationship between the objectives was almost polynomial, with f1 being
roughly proportional to 1/f2

0.89. Next, it was found that, for all Pareto-optimal so-

40

lutions, the shear stress constraint is active. In the small-deflection (large-cost)
cases, the chosen bending strength (30,000 psi) and allowable buckling load
(6,000 lb) are quite large compared to the developed stress and applied load. Any
Pareto-optimal solution must achieve the maximum shear stress value (13,600
psi). So, to improve the designs in this region without sacrificing deflection, it
would be necessary to use a material with a larger shear strength capacity. A third
overall principle found was that the transition point (T) between two trade-off be-
haviours is related closely to the buckling constraint. Designs with larger deflec-
tion (or smaller cost) reduce the buckling load capacity. When buckling load ca-
pacity becomes equal to the allowable limit (6,000 lb), no further reduction is
allowed. After this point (towards small-deflection solutions), the beam thickness
must reduce in inverse proportion to the with deflection objective in order to retain
optimality.

Next, for small-deflection solutions, the beam width remains constant. This in-
dicates that for most Pareto-optimal solutions, the width must be set to its upper
limit. Although the beam width has opposie effects on cost and deflection, it is in-
volved in the active shear stress constraint, and since shear stress reduces as beam
width increases, it can be argued that fixing beam width to its upper limit would
make a design optimal. Thus, if in practice the cost objective is not paramount, so-
lutions may be explored which have a fixed width (the maximum 10in in this
case), thereby simplifying the inventory. However, along the Pareto tradeoff sur-
face, the weld length increases with increasing deflection, and the weld thickness
decreases with increasing deflection. Deb & Srinivasan (2005) noted that these
phenomena are counter-intuitive and difficult to explain from the problem formu-
lation. However, the innovized principles for arriving at optimal solutions seem to
be as follows: for a reduced cost solution, keep beam width t fixed to its upper
limit, increase weld length l, and reduce beam and weld thickness (h and b). This
‘recipe’ is valid while the applied load is strictly smaller than the allowable buck-
ling load.

Beyond that point, any reduction in cost must come from reducing beam width
below its upper limit, increasing beam thickness, and adjusting the weld parame-
ters so as to make the buckling and shear stress constraints active. Finally, the
minimum cost solution occurs when the bending stress equals the allowable
strength (30,000 psi), at which point all four constraints become active.

Finally, to achieve very low cost solutions, the innovized principles are dffer-
ent: for a reduced cost solution, we need a smaller beam width, but larger beam
thickness and weld parameters.

Deb & Srinvasan report a higher level run of the innovization procedure for this
case, in which innovization was redone separately for different values of the three
allowable limits in the first, second and fourth constraints above. It was clear that
all three cases produced similar dual behavior (different characteristics on either
side of a single transition point) to that observed in the original case. All other in-
novized principles mentioned above (such as the constant nature of beam width,
beam thickness being smaller with increasing deflection, and so on) remained

41

valid,. And significant further insights were obtained into the overall design prob-
lem, detailed in full in Deb & Srinivasan (2005).

Innovization: Concluding Notes

When we face an optimization problem with at least two conflicting objectives,
the set of optimal solutions is very diverse. Having found such a set effectively
and efficiently using evolutionary multiobjective optimization (judiciously com-
bined with other methods that help locally optimise), the notion of innovization is
to analyse this set of solutions to see if there are commonalities and patterns that
might translate into general design principles for the problem at hand. It turns out
that this is true, and interesting new principles (difficult or impossible to have
been obtained otherwise) have emerged from several studies to date. The emerg-
ing truth seems to be that solutions along a Pareto front do often seem to share
similarities that seem to be principles of optimality for the problem at hand, irre-
spective of location on the Pareto front.

 In this section we have borrowed results from just two case studies to illustrate
the innovization principle. Deb & Srinivasan (2005) show several more examples,
including spring design and multiple-disk clutch brake design, while one more re-
cent study (Datta & Deb, 2009) displays an excellent example of the potential im-
pact of innovization (and hence indirectly, of evolutionary multiobjective optimi-
zation) by finding new innovized principles for the setup parameters of a turning
process using a lathe and cutting tool that are overwhelmingly common in industry
workshops. Finally, there is no particular reason to believe that innovization is
constrained to engineering design. It will be interesting to see future applications
of this idea in other design fields, such as electrical circuits, optical systems,
communication networks, and the many other areas in which evolutionary mul-
tiobjective optimization is increasingly used.

4. Logistics and Combinatorics Made Easy: Robust Solutions
and New Algorithms via Natural Computation

In this section we consider two areas which exemplify how natural computing
(largely, learning classifier systems and evolutionary computation) has provided
us with highly successful ways to address difficult logistics problems. Logistics
usually relates to scheduling and timetabling problems of various kinds, but we
also include here the closely related and general field of combinatorial problems in
which a discrete collection of items of some kind must be arranged in an optimal
way. There are innumerable examples of natural computing applications in this
domain, and our first case is simply a selection of one (of several possibilities) that
combines the attributes of: ‘interesting’, ‘`real-world’, and difficult’ (we look at

42

the case of a real-world truck scheduling problem). We then move on to perhaps a
more profound area that has emerged from the late 1990s, in which, rather than
use evolutionary computing to solve ‘one problem at a time’, we consider the use
of natural computing to discover new algorithms which can then in turn be used
on entire classes of problems, solving them efficiently and effectively. This is an
area within the emerging field of ‘hyper-heuristics’, but with the particular focus
on designing new algorithms which we refer to as ‘super-heuristics’.

4.1 Safe Streets via Robust Route Optimization

In this section we describe an application of natural computation in a critical sea-
sonal logistical task, covered more fully in Handa et al (2006). Local Authorities
in countries such as the UK, with marginal winter climates, are responsible for the
precautionary gritting/salting of the road network in order to allow safer travel in
icy conditions. This winter road maintenance task is extremely challenging as
well as critically important to the locality, with a potentially major impact on both
business and day to day life.

 As Handa et al (2006) note, in the case of the UK, there are around 3,000 pre-
cautionary gritting routes that cover about 120,000 km (30% of the entire UK road
network). On nights with forecasted snow or ice, these routes need to be treated
so as to ensure the safety of road users. This typically costs between £200 to £800
per km or road (Cornford & Thornes, 1996). Accurate road surface temperature
prediction is required, in order to decide which roads need to be treated, however
this decision can often be uncertain. Optimization of the route to be traveled by
the gritting/salting trucks also plays a crucial role here. The consequences of a
wrong decision – not treating a road that eventually becomes dangerous – are seri-
ous, but if grit or salt is spread when it is not actually required, there are obvious
financial and environmental drawbacks. The goal of gritting route optimization is
to minimize the financial and environmental costs, while ensuring that roads that
need treatment will be gritted in time. Further, it is essential that gritting routes are
planned in advance, to enable effective use of limited resources (e.g., trucks and
salt).

 Mostly, the design of gritting routes relies heavily on local knowledge and ex-
perience. A ‘static,’ often paper-based, approach is typically used to optimize grit-
ting routes, staying within constraints imposed by the road network itself, vehicle
capacities, the number of vehicles and the available personnel. In this section, we
describe the application of an evolutionary algorithm to this task. Covered in more
detail in Handa et al (2006), we discuss here a Salting Route Optimization (SRO)
system that combines evolutionary algorithms with the latest version of the Road
Weather Information System (XRWIS) commonly used by local authorities.

43

The Salting Route Optimization (SRO) System

A very important aspect of the SRO we discuss here is its integration with
XRWIS, which, recently trialled by the UK Highways Agency, is a high-
resolution route-based forecast system which predicts road temperature for a 24-
hour period. XRWIS models surface temperature and condition at thousands of
sites in the road network. Data are collected along each gritting/salting route by
conducting a survey of the ‘sky-view factor’ (a measure of the degree of sky ob-
struction by buildings and trees) (Chapman et al, 2002). This is then combined
with other geographic, land-use, and updated meteorological data to predict road
conditions at typical spatial and temporal resolutions of 20 metres and 20 minutes
respectively. The output is displayed as a colour-coded map of forecast road tem-
peratures and conditions that is then disseminated to highway engineers.

In the SRO, XRWIS provides forecast temperature distributions over
time that are then input to an evolutionary algorithm module. Each temperature
distributions (different distributions for different future timepoints), along with
commercially available routing data, is transformed into an instance of a capaci-
tated arc routing problem (CARP) (Lacomme et al, 2004). That is, each tempera-
ture distribution suggests a specific set of roads on the network that need to be
treated. The CARP is then defined as the need to find routes that serve this spe-
cific set of roads in a reasonable time-frame, using no more than the available ve-
hicle numbers and capacities, and ideally minimizing the number of vehicles used.
An important point is that each timepoint leads to a different CARP instance, since
the set of roads that require treatment may be different. The overall goal of the
SRO system is to find a suitable series of salting routes which ensure that the
roads that require treatment are treated in time, but also ensuring that the routes do
not vary too much, which in turn causes consdierable confusion and distraction to
the workforce. In this sense, the SRO system finds a robust solution, which en-
sures to cover the most important sections of the road network.

Given the series of CARP instances, the evolutionary algorithm module finds
solutions that are simultaneously good for all or many of these instances. In par-
ticular, a specially designed memetic algorithm is used (a combination of evolu-
tionary and local search) as described next. In this approach, the fitness of a solu-
tion is calculated according to the entire ensemble of CARP instances. Howeve, at
each generation, the operators and local search processes concentrate on a specific
instance. The different instances are weighted, and this weighting controls the se-
lection of the instance in each generation, in a way described in the following.

Robust Solutions for Salting Route Optimization

Searching for robust solutions is currently a significant topic in the field of opti-
mization in uncertain environments, since in many problems the decision variables
or environmental parameters are subject to noise. In this case, Handa et al (2006)
required that solutions to the different CARP instances be as similar to each other

44

as possible (so that daily changes in the temperature distribution do not lead to
significant disturbance in the route to be followed), while at the same time requir-
ing good performance in terms of the costs of the routes. Handa et al modelled a
robust SRO solution as one which optimised the following:

∫= daapaXEXF)(),()(

in which X and a indicate route design variables (routes and possible tempera-
tures), E(X, a) indicates the distance cost of gritting routes X given temperature a.
while p(a) indicates the probability of temperature a. Hence, the idea is to find
ideal gritting routes for each temperature distribution, but weighted by the prior
probabilities of the forecast temperatures.

Although the distribution in temperature will vary daily across a road network,
warmer (colder) sections are usually warmer (colder) than the rest of the network.
So, even on cold nights, some warmer sections may not require salting, whereas
colder sections may need treatment even in relatively warm conditions. The fitness
function, as stated above, is impossible to compute exactly since its components
are largely unknown; instead it is approximated by using a number of typical tem-
perature distributions. Considering this and other issues, the fitness function used
by Handa et al (2006) was as follows, given a set of temperature distributions Ae:

∑ ∈

−=
eAa

i

ii
i aE

aEaXE
wXF

)(

)(),(
)(*

*

in which E*(ai) represents the difficulty of finding a good route for temperature
distribution ai,, and the wi are weights, summing to 1, which balance the impor-
tance of different temperature distributions during the optimisation process. The
weights are adapted during evolution in a way that maintains a focus on the routes
that are proving more costly, while the E*(ai) values are lower bounds on the cost
of the routes for each temperature distribution ai, actually pre-determined by prior
runs of the memetic algorithm for this purpose described in Handa et al (2005).
 Handa et al (2006) used a permutation-based encoding as follows. An in-
dividual solution comprised a paermutation of arc IDs (road sections), interspersed
with symbols representing individual trucks. For example, the individual:

2 6 s1 5 4 7 1 s2 8 3

indicates a gritting route for two trucks; truck 1’s route is road sections 5, 4, 7 and
1 (in that order), and truck 2’s route is road sections 8, 3, 2 and 6 (note the wrap-
around involved in the interpretation.

At each generation of the memetic algorithm, crossover (the EAX operator
proposed by Nagata and Kobayashi (1997)), and local search methods are applied
with regard to only one CARP instance (that is, one temperature distribution) in
every generation. That is, the for example, the local search is guided by the fitness

45

according to the selected instance only. The choice of instance is made stochasti-
cally according to the current weights of the temperature distributions. However,
between generations, the fitness of each solution is calculated according to the en-
semble of instances using the fitness function described, and this then guides the
selection of parents for the next generation.

Comparisons and Conclusions

In experiments by Handa et al (2006) to test and validate this approach, robust so-
lutions were evolved by using 10 different temperature distributions, and these
were then compared with the routes currently used by South Gloucestershire
Council in the UK.

Figure 11 shows an example of routes found for a cold day, comparing the
SRO system’s routes (on the left) with the existing routes (on the right).

Figure 11. Left: routes optimised by the SRO system for a cold day in South
Gloucestershire; Right: existing routes obtained by human experts.

In comparison with the routes that were in use at the time, the robust solutions de-
livered by the SRO were able to provide more than 10% savings in terms of total
distance travelled by the available trucks.

 The SRO system was developed for finding optimized robust solutions for
salting trucks, and as such it is an excellent example of an important real-world
combinatorial problem that can be solved effectively via a system with natural
computation at the core. In this case, especially given the integration with the
XRWIS, the system can be regarded as proof of concept for similar tasks that need

46

careful planning in relation to weather conditions, such as waste collection and
parcel delivery.

4.2 Hyper and Super Heuristics

In this section we briely consider a fairly new method in search and optimization,
variously called hyper-heuristics or, as an emerging term in the community refer-
ring to a specific brand of approach, super-heuristics. In the context of selected
applications of natural computation, the special aspect of super heuristics is that
they represent the use of a good global optimization or learning method – hence,
typically evolutionary computation or a learning classifier system – to discover
new algorithms that solve problems of a given kind. This is as opposed to, and
substantially more general than, using optimization or learning to solve a single
problem instance.

 In very broad terms, the general notion of hyper-heuristics refers to the idea of
using an algorithm that manipulates a set of heuristics in order to solve a given
problem. This is indeed a very common activity these days, and can be seen in
many published applications of evolutionary algorithms, and of meta-heuristics in
general (including, for example, tabu search and simulated annealing). Typically,
such an approach is sometimes called a hyper-heuristic in the case that the encdo-
ing used involves lowe level heuristics in an integrated way. That is, rather than an
encoding of a solution being a direct representation of a solution, the encoding is
instead an indirect representation (we will later look at examples). The interesting
point is that, in some cases, an encoded solution for a given problem can actually
be interpreted as an algorithm that can be applied to a large collection of instances
of that problem, not just the instance currently being solved. In many so-called
‘hyper-heuristic’ applications, this reuasbility of the encoding of a solution is only
a side effect. When the term ‘super-heuristic’ is used herein, this is meant to refer
to the idea that evolving new general and reusable algorithms (for classes of in-
stances, rather than a ingle instance of interest), is the specific goal of the process.
However we note that ‘super-heuristics’ seems to have been first used in the litera-
ture by Lau & Ho (1999), to denote something more akin to standard hyperheuris-
tics, in which a set of heuristics are engineered by higher level algorithms in order
to solve a specific problem instance. In this section, we describe the ideas, amid
some examples and historical notes. For alternative and more detailed accounts,
we recommend a 2003 book chapter (Burke et al, 2003), or the current Wikipedia
article on hyper-heuristics.

47

Potential Impact of Super-Heuristics

The impact and importance of super-heuristics is partly evidenced by a negative
point: despite a large collection of case studies, standard applications of meta-
heuristics tend to be ‘one-off’ and resource-intensive. For example, a particle-
swarm optimisation method developed to solve a small company’s daily process
scheduling problems may seem successful on its own terms, but its existence does
not necessarily accelerate the potential for other companies with similar (but not
the same) problems to develop similar solutions . And, typically, the solution itself
may be resource intensive, tying up considerable computing resources every
morning. Also, the devlopment of this solution will have typically been influ-
enced by a perceived goal for producing solutions as optimal as possible, despite
the fact that daily uncertainties and perturbations to the production process under-
line this opimality – i.e. a large number of “reasonably good” solutions will have
worked just as well.

In contrast, super-heuristics seem to open up the possibility for producing solu-
tions that, though having an initial cost in development time, are much more flexi-
ble. The ‘solution’ in this context would be a fast, constructive algorithm that
tends to work well (as well as run much more quickly than a typical metaheuristic
implementation) on the problems typically faced by the company, and may well
generalise to similar problems more successfully and easily than the metah-
heuristic approach.

Hyperheuristics: further notions and examples

Suppose we have an instance of a problem to solve. In particular, it is easier to
think in terms of combinatorial and logistics problems, the kind in which we might
build a solution step by step by making a series of decisions. For example, if we
have a collection of student examinations to timetable, first we might find a room
and a time for the largest exam; then we might decide which exam to look at next,
then we might decide where to place this next exam, and so on. For such problem
domains there is usually an available collection of ‘low level’ heuristics. For ex-
ample, in timetabling a common heuristic is to first sort the events that have to be
timetabled according to some measure of difficulty. There are several such meas-
ures, based on the fact that some events are more difficult to place than others (e.g.
can only fit in a small number of rooms, and potentially clash with many of the
other events). One way to do timetabling constructively (such algorithms are often
called ‘greedy’) is to repeatedly choose an event to timetable based on a difficulty
measure, and then timetable it by finding a place and a time that suits. Each poten-
tial difficulty measure can be considered a different heuristic. Similarly, deciding
where and when to place the event are also activities that can be based on a range

48

of specialised heuristics. Very similar can be said of other, if not all, logistic or
combinatorial problems.

 With independent roots in the field of automated planning and scheduling
systems (Minton, 1988; Gratch et al, 1993; Cross & Walker, 1994), an early and
influential example of the hyper-heuristic approach being used for solving specific
problem instances (i.e. one at a time) is concerned with open-shop schedulling
problems in Fang et al (1994). In Fang et al’s work, several low level heuristics
were considered, all of which were relevant to the problem of ‘open-shop’ sched-
uling, in which there are, say, j jobs that need to be scheduled, each consisting of a
certain number of tasks. Each such task must use a specific resource (usually
called a machine) for a specific amount of time, although the tasks that comprise a
given job may be done in any order (when the order of tasks within a job is con-
strained, it is a job-shop problem). For example, PCs may arrive at a processing
centre with the operating system installed, and need to have a number of applica-
tions installed (for which order of installation is unimportant) by a number of ex-
perts, each expert in the installation of a particular application. Each ‘job’ is a PC,
which may have its own individual specification and subset of applications that
need to be installed; this amounts to an open shop scheduling problem.

 Fang et al (1994) used an evolutionary algorithm which constructed solutions
as follows. A chromosome was a series of pairs of integers [t0,h0,t1,h1,...] inter-
preted from left to right, meaning: for each i, ‘consider the ti-th uncompleted job
(always interpretable, when treating the list of uncompleted jobs as circular) and
use heuristic hi to select a task to insert into the growing schedule in the earliest
place where it will fit’. Examples of the lower level heuristics used are:

• choose the task with the largest processing time;
• choose the task with the shortest processing time;
• find the tasks that can start earliest (there may be more than one) and

choose the one with largest processing time;
• find the tasks that can be inserted into a gap in the schedule so far, and

pick one that best fills this gap

This approach, was called ‘evolving heuristic choice’, and led to excellent re-

sults on benchmark problems, including some new best results at the time of pub-
lication, and it marked the beginning of a wave of interest in what were later
temed ‘hyper-heuristic’ approaches. An example following this work was that of
Hart and Ross (1998), who looked at job-shop scheduling problems (where the or-
dering of tasks within a job is pre-determined – e.g., in our software installation
example, it could well be the case that applications need to be installed in a certain
order). Their approach relied on the fact that there is always an optimal schedule
which is ‘active’, meaning that to get any task completed sooner you would need
to change the order in which tasks from different jobs get processed on one or
more of the machines, Meanwhile, a well-known heuristic algorithm was ex-
ploited (due to Giffler and Thompson (1960)) that generates active schedules. We

49

now follow the explanation by Hart & Ross (1998) and in Burke et al (2003), in
explaining their approach. Giffler & Thomson’s active-schedule generation algo-
rithm is as follows:

1. let C = the set of all tasks that can be scheduled next
2. let t = the minimum completion time of tasks in C,and let m= machine on

which it would be achieved
3. let G =the set of tasks in C that are to run on m whose start time is < t
4. choose a member of G, insert it in the schedule
5. go to step 1.

In step 4 there is a choice to be made, which was exploited in Hart & Ross’ hyper-
heuristic approach. Now consider a simplified version of this algorithm, which
only generates so-called ‘non-delay’ schedules.

1. let C = the set of all tasks that can be scheduled next
2. let G = the subset of C that can start at the earliest possible time
3. choose a member of G, insert it in the schedule
4. go to step 1.

This time, there is a choice to be made in step 3. Hart & Ross’ approach was to

use an encoding of the form [a1,h1,a2,h2,…], again interpreted from left to right,
where the ais are 0 or 1, indicating whether to use an iteration of the Giffler and
Thompson algorithm or an iteration of the non-delay algorithm, in order to decide
on the next task to schedule, and the his indicate which of twelve heuristics to use
to make the choice involved in the selected algorithm. This method again pro-
duced excecllent results on benchmark problems.

Finally, before we move on to two examples of what can be called ‘super-
heuristics’ (.e. where we are evolving general problem solvers, rather than al-
gorighms for one instance at a time), we briefly mention an early real-world appli-
cation of the hyper-heuristic approach. Described in Hart et al (1998), the problem
that needed to be solved was to schedule the collection of live chickens from
farms in Scotland and Northern England, for delivery to one of two processing
factories. A given instance of the problem arises from a set of orders from super-
markets and other retailers, which have to be fulfilled within given time windows.
The specific resources that needed scheduling were of two types: the collection of
live chickens from farms was done by a set of ‘catching squads’ who moved
around the country in mini-buses; the delivery of chickens to processing factories
was done by a set of lorries. In general, catching squads needed to move from
farm to farm collecting chickens, and lorries needed to arrive at farms in time to
be loaded with chickens caught by the squads, and then either move to another
farm if able to hold more, or proceed to unload at a processing plant (and then
perhaps back to a farm). The principal aim was to keep the factories supplied with
work, while attempting to ensure that live chickens did not wait too long in the

50

factory yard, for veterinary and legal reasons. There were several constraints. For
example, different types of catching squad were distinguished by differences in
their contractual arrangements, relating to the amounts of work they would do per
day or week (including, for example, guaranteed minimum amounts of work.
Meanwhile, the order in which a given squad could visit farms in one day was
constrained according to the status of each farm in terms of certain chicken dis-
eases, whilst lorry schedules also were subject to a range of associated constraints.
Overall, the target was to create good schedules satisfying the many constraints,
but that were also generally similar to the kinds of work pattern that the staff were
already familiar with, and to do so quickly and reliably.

After several approaches which did not work very well, using what were the
standard styles of evolutionary algorithm approach at the time (experts in classical
scheduling methods had already been consulted by the company, and had tended
to retreat in terror once the problem had been described to them), the eventual so-
lution used two evolutionary algorithms in two stages. The first was a hyper-
heuristic approach to assign tasks to individual catching squads in a way that was
able to cover the current set of customer orders. In detail, a chromosome specified
a permutation of customer orders followed by two sequences of heuristic choices.
The first sequence of heuristics specified ways to split each order into convenient
workloads, and the second sequence of heuristics specified how to assign those
workloads to catching squads. The second stage was an evolutionary algorithm
that took the set of tasks produced from the first stage, and delivered a schedule of
lorry arrivals at each factory. For this real industry problem, a hyper-heuristics ap-
proach was central to a solution that worked successfully, whereas no previous
approach had met the required standards.

Before we move on to ‘super-heuristics’, we note that we have barely scratched
the surface of applications that have found hyper-heuristics to be a highly flexible
and successful approach, albeit at the time of writing the application areas tend to
be not very diverse, with most either involving timetabling (e.g. Terashima-Marin
et al, 1999; Cowling et al, 2000; Burke et al, 2002; Bilgin et al, 2006) or schedul-
ing (e.g. Hart & Ross, 1998; Cowling et al, 2002;; Ayob & Kendall, 2003). For a
much more comprehensive discussion of hyper-heuristics, readers may refer again
to Burke et al (2003), as well as Ozcan et al (2008).

Superheuristics: evolving and learning new and effective algorithms

In an increasingly influential piece of research, Ross et al (2002) extended the no-
tion of hyper-heuristics to see whether new constructive algorithms could be
evolved which could deal effectively with large sets of problem instances, rather
than one instance at a time. In what we term here a ‘super-heuristic’ approach,
Ross et al (2002; 2003) used a learning classifier system called XCS (Wilson,
1998), and later an evolutionary algorithm, to try to learn an algorithm for solving

51

hard bin packing problems. The learning was done in Ross et al (2003) with an
evolutionary algorithm aiming to optimize the parameters for a fast constructive
bin packing algorithm, training on a set of test problems (i.e. a collection of differ-
ent problem instances was involved in the fitness function). When the learned al-
gorithm was then tested on a different set of test problems, its performance was
found to be clearly competitive with state of the art human designed bin-packing
constructive algorithms.

In bin-packing (as with many algorithms, and as we have discussed with
scheduling), a typical constructive algorithm will build a solution one step at a
time, each step involving the use of some heuristic to choose the next item to pack
into a bin, and maybe another heuristic to choose which bin to place it in (or a sin-
gle heuristic covering the combined decision). The overall goal is to pack a given
collection of items of different sizes into a set of fixed capacity bins, using as few
bins as possible. In detail, the overall idea in Ross et al (2002) and their later work
(2003) is as follows. At each stage during such a constructive algorithm, we are in
a particular problem ‘state’, which is characterized by the set of items left to pack,
and the current partial packing of items into bins. In this state, it is reasonable to
infer that some heuristics will be better than others for deciding on the next
item/bin placement. So, Ross et al’s approach was to define a constructive algo-
rithm as a set of rules. Each rule in the set referred to a particular problem state,
and specified what heuristic to use when in that state. Clearly there are far more
potential problem states than we can expect to be represented by the left hand
sides of such rule; the method gets around this by having the rules essentially refer
to points in the space of potential problem states, and the rule that ‘fires’ at any
particular time is the one that is closest to the current problem state.

 The approach was first tested using 890 benchmark bin-packing problems in
Ross et al (2002), of which 667 were used to train the XCS learning classifier sys-
tem, and 223 for testing. The single resulting learned constructive algorithm was
able to achieve optimal results on 78.1% of the problems in the training set, and
74.6% of the problems in the unseen test set. This compared well with the best
single heuristic tested, which achieved optimality 73% of the time. A notable find-
ing in that work was that when the training set was confined to some of the harder
problems, the learned algorithm was able to solve seven out of ten of those prob-
lems to optimality (compared with zero out of ten for the comparison human-
designed heuristics). This approach was improved in Ross et al (2003), with many
interesting findings that showed highly competitive results for evolved algorithms
on hard unseen problems.

 Finally we take a brief look at a different style of super-heuristic approach ap-
plied to a different domain, specifically the work of Fukunaga (2008), which con-
cerns the satisfiability (SAT) problem. A SAT problem instance is a conjunctive
normal form (CNF) expression, such as ‘(A or B or D) and (B or not(C)) and (D or
E) …’, involving a number of logical variables (A, B, …) which may either be
true or false, which in turn are the elements of a number of clauses, conjoined into
the full statement. The problem is to discover whether or not an assignment of

52

truth values to each of the variables exists, which results in each of the conjuncts,
and therefore the entire statement, being true. Fukunaga’s work exploited a well-
known general local search framework for SAT, as follows:

1. Generate an assignment A of truth values at Random (e.g.: A = T, B = F,

C = F, …)
2. For a given maximum number of iterations:

2.1 If A satisfies the formula, return YES
2.2 Choose a variable V with a Variable Selection Heuristic
2.3 Change A by flipping the value of variable V

3. Return UNKNOWN

The algorithm uses a ‘Variable Selection Heuristic in step 2.2, and this in turn was
the focus of Fukunaga’s investigations. There are several well known examples of
variable selection heuristics, which are human-designed and typically used within
the above algorithm framework. One example is GSAT (Selman et al, 1992),
which involves choosing the variable that, if flipped, would cause the highest net
gain in satisfied clauses, breaking ties randomly. Another, HSAT (Gent & Walsh,
1993), works as GSAT, but breaks ties in favour of age – so, the variable that was
last flipped longest ago in the overarching local search process is the one chosen
to break the tie. Yet another, of several more, is so-called GWSAT(p) (Selman et
al, 1994), in which, with probability p, a random variable from a random unsatis-
fied clause is selected, else GSAT is used.
 Fukunaga (2008) noticed that variable selection heuristics in the SAT lit-
eratire have certain common building blocks, including

• Scoring variables via a gain metric
• Selecting a variable from a subset of variables
• Ranking variables, and choosing the best (or second best)
• Consideration of a variable’s `age’
• Branching (if x do A, else do B)

An insightful comment that Fukunaga makes is that, in the history of SAT heuris-
tics, developments typically come from finding new ways to combine these build-
ing blocks, rather than entirely novel heuristics. This begs a number of questions,
one of which is whether or not automated methods may be able to find better
combinations of these building blocks. The latter is in fact exactly what Fukunaga
(2008) investigated, by using genetic programming, with a function and terminal
set designed in such a way that novel heuristics could be expressed in terms of the
above ingredients. As with the previous super-heuristic approach we discussed,
the genetic programming experiments involved using a large set of different SAT
instances in the fitness function, and Fukunaga (2008) evaluates the results by
testing the evolved variable selection heuristics on unseen test sets.
 On a collection of 1,000 unseen test instances, Fukunaga’s evolved vari-
able selection heuristics are vey competitive with the state of the art variable se-
lection heuristics, GWSAT, WalkSAT and Novelty (McAllester et al, 1997). A

53

handful of the new heuristics found in this way dominated the state of the at heu-
ristics in terms of success rate and speed. A further rather interesting finding was
that one of the heuristics in a random search of expression trees was almost as
good in terms of success rate, but usually faster, than the human-designed state of
the art heuristics.

Some concluding notes

The super-heuristics concept has the potential to play a major role in optimisation
over the next few years. One way to view this development is as a thrust towards
more ‘general’ optimisation systems, which, for a wide variety of application ar-
eas, is a significant goal. In just one example application area, timetabling, there
has been very extensive research in recent years along the lines of hyper-heuristics
ans upper-heuristics; this has followed a statement in Ross et al (1997), which
was, “… all this naturally suggests a possibly worthwhile direction for timetabling
research involving Genetic Algorithms. We suggest that a Genetic Algorithm
might be better employed in searching for a good algorithm rather than searching
for a specific solution to a specific problem.” In agrrement with Burke et al
(2003), we would emphasise that this suggestion can be generalised to a much
wider range of problem areas than has currently been addressed with hyper- and
super-heuristic technologies.

5. Design: Art, Engineering, and Software

In this penultimate section, we consider the theme of ‘Design’, and discuss three
quite contrasting examples. Design is an area of especial interest when we con-
sider what natural inspiration has to offer to practitioners of various sorts. Today,
and for some considerable time still to come, the world is, to most intents and pur-
poses, filled with two kinds of artefact – those designed by nature, and those de-
signed by human designers. The chief difference between these two kinds of arte-
fact is the specific design method that was employed. The naturally designed
artefacts, as most scientists would agree, were designed by an evolutionary proc-
ess – essentially an iterated process of randomised generation and test, in which
new designs, often failures, sometimes improvements, emerge via slight random
changes or randomised recombinations of old designs. With a ‘survival of the fit-
test’ principle built in to this strategy, the successes are more often chosen than the
failures when it comes to being the foundation for (or the parents of) new designs.
Over time, this process continues to evolve new designs that are successful in their

54

environment, and the examples we see today include everything from archaea to
artichokes, baobabs to brains, e-coli to elephants, and from wasps to the sophisti-
cated set of processes that lead to the construction of wasp nests. It is overwhelm-
ingly the case, however, that human-designed artefacts have not adopted this
process. Humans prefer to design things in a rational way, that prefers the adop-
tion of designs that have worked before for similar problems, and rejects the no-
tion of any randomised exploration. Humans tend to stick to a battery of accepted
design rules for the application in hand, and usually opt for a step-by-step con-
structive approach, rather than generating and later discarding many different de-
signs at once.
 Some criticisms of the human way of designing can be summed up in the
following statement: the over-reliance on established design rules imposes severe
constraints on innovation, and probably limits the effectiveness of the resulting
designs. Meanwhile, nature’s method for design may well not be perfect – it does
indeed seem wasteful – however it certainly beats the human method for innova-
tion. We cannot yet design, with a rational approach, a biological flying machine
as efficient as a mosquito, or an energy transduction system as efficient as photo-
synthesis. Meanwhile, it is notable that randomisation is an integral part of na-
ture’s method – undirected perturbations to designs tend to be anathema to the
human approach, but are continually tried and tested in nature. Overall, it seems
abundantly clear that nature has a lot to teach us about how to design things.
 Perhaps unsurprisingly to most of our readers, but nevertheless, we hope,
inspiringly, the documented experiences so far in the arena of natural computation
in design show us that novel, effective and unprecedented designs can be found by
applying nature’s method to design the artefacts we need to create. We discuss in
the next subsections one of the more prominent and exciting examples in recent
years, which is NASA’s use of evolutionary techniques to come up with entirely
novel antenna designs that have been deployed on satellite missions. But before
that, we look at an example of the use of interactive evolutionary computation in
artistic design, and we end this section with a brief look at how natural computa-
tion is making headway into the design of software.

5.1 Interactive Evolutionary Design of Batik Patterns

Evolutionary Art Systems (EASs) are increasingly popular (Romero & Machado,
2008), commonly using evolutionary computation, usually interactively (e.g.
Sims, 1991; Lutton, 2006), to generate aesthetic artworks. In some real world ap-
plications, focussing on particular niches in art and design, EASs have been de-
veloped specifically to facilitate a designer’s activity. One recent such case, which
we describe here, is by Li et al (2009), in which an EAS tool is described for help-
ing designers of Batik patterns, a traditional art in Indonesia and southeast Asia.

55

Batik is a form of painting or writing on cotton cloth, applied with the aid of a tool
called a cap (Kerlogue & Zanetini, 2004). Nowadays, Batik is used in fashion, fur-
nishing fabrics, and household accessories, as well as paintings and ornamenta-
tions in rooms and offices. However, fine quality handmade Batik is very expen-
sive, so it potentially valuable to consider ways that would decrease Batik
designers’ effort and increase production of Batik.

Li et al (2009) investigated the potential for an EAS-based Batik design system
with such goals in mind. In doing so, however, they had to consider the difficulties
commonly faced by EAS. First, the evolutionary process is often quite limited by
the lack of an explicit correlation between genotypes and phenotypes. Essentially,
the common ways in which aesthetic works tend to be encoded by manipulable
genes (think of fractal patterns encoded in the typical way by mathematical formu-
lae) are far removed from the works themselves, so that, for example, when a hu-
man designer selects what he or she thinks are good parents, they may find that
none of the promising features they saw in the parents actually appears in the next
generation. Another common difficulty is that the process can be tiresome for a
human designer, spending hours sitting at a computer rating generated images. Li
et al’s work attempted to develop a Batik design system with innovations that ad-
dressed these issues. In particular, they devised a suitable encoding for various Ba-
tik styles, and they devised an ‘out-breeding’ mechanism, that provided an addi-
tional way to generate new pattenrs that seemed to be on the aesthetic path being
pursued by the desitgner. These issues are elaborated in the following subsections,
but the reader is referred to Li et al (2009) for a more complete account.

Encoding Batik Patterns

Li et al (2009) explored the space of geometrical patterns used in Batik, and clas-
sified them into categories. They found that the most common features were repe-
tition, and certain geometric transformations such as rotation, translation, and re-
flection. This led to a way to encode patterns in genotypes, which specify a
number of non-redundant primitives along with transformations. The encoding is
therefore based directly on features of Batik patterns, most basic elements of
which include: triangle, polygon, circle, dot, star and flower. Each feature is gen-
erated from one gene in the genotype.

A genotype consists of a variable number of genes, each of which represents
one feature in the phenotype. Every gene has two evolvable attributes. The first
part is a specific basic pattern (e.g. a simple representation of a flower petal, or a
circle or a triangle, etc.); the second part, the transformation, is a vector of matri-
ces, which each epresent a transformation of the unit set. A matrix is encoded by
six numbers, indicating a 2D linear transformation together with a translation
This representation is straightforward and easy to manipulate. The resulting pat-
tern is made up of the union of the patterns induced by the different genes. Figure
12 shows some examples of single simple genes in this encoding, with their inter-

56

pretations above, while Figure 13 shows some patterns produced using the system,
contrasted with some human-designed similar Batik patterns.

Figure 12: Simple examples of Batik pattern genes, and their interpretations

Boosting the evolutionary process

Li et al (2009) use what they call an ‘out-breeding’ mechanism to invigorate the
pool of patterns produced during the interactive evolutionary process. In their
EAS, two separate populations of patterns are maintained, displayed to the de-
signer on separate panels. One population evolves in the normal way, based on
treating the user’s feedback as the fitness function. However the second popula-
tion evolves towards individuals that are maximally dissimilar to the what seem to
be the user’s preferences, hence injecting considerable diversity in the displayed
patterns. Whenever the first population seems to be stagnatint, individuals in the
second population will be introduced to the first, contributing diverse input to the
gene pool.

 The crux of this mechanism is the idea of ‘dissimilarity’, which requires a
way to compare patterns. Li et al (2009) preferred to investigate a measure that
was related to the visual difference between patterns, expecting that a method
based only on genotypic difference would not be satisfactory. They use a metric
based on singular value decomposition (SVD)(Wang et al, 2000). In their ap-
proach, a pattern A is interpreted as a matrix, and they represent each pattern in
terms of the singular values arising from the SVD of A, which in turn are likely to
capture salient features of the visual perception of A. A similarity metric between
two patterns is then defined on the basis of a normalised comparison of their vec-
tors of singular values. The outbreeding process then operates as follows: In each
generation, while one population continues to regenerate patterns according to the
normal process, guided by the user’s evaluations, the outbreeding population re-
generates in a way guided by using dissimilarity as the fitnes measure, measured
in terms of dissimilarity from the pattern that the user currently perceives as best.

57

Li et al (2009) report that the out-breeding mechanism is very effective in aiding
the search for innovatiave patterns, and find that the ‘outbred’ populations tend to
be more elaborate and attractive than the ‘main’ population!

Fig 13 Above: some real-world Batik patterns. below: Similar individuals gen-

erated by the mathematical model, such as appear in th einitial population of the
Batik.interactive evolutionary system.

Meanwhile, concening the ‘standard’ interactively evolved population, we note
that the generation of the initial population, and the subsequent evolution based on
user-supplied fitnesses, relies on a collection of typical genetic operators as fol-
lows. The initial population is informed by using a mathematical model of Batik
pattern space on based Li et al’s preliminary characterisation. The model is used to
generate collections of genes, and then mutation operators are applied to these: ei-
ther Gaussian mutation (in which each point in the basic pattern element of each
gene is perturbed by the same random amount), or style mutation (in which the
elements of a gene reflecting line styles are perturbed, for example from
straight-line to curve). During the subsequent interactive evolution proc-

58

ess, new patterns are produced by crossover and mutation of patterns deemed
good by the user. Standard types crossover and mutation are used for this in Li et
al’s work so far, for example including linear combination and gene-swap based
crossover. Also, as explained fully in Li et al (2009), their system has other fea-
tures that are meant to aid the user’s design process, such as the ability to retrieve
patterns that were produced earlier in the evolution.

Empirical Notes

Li et al (2009) found that some of the traditional Batik designs could be produced
by the mathematical model that underpins the generataion of the initial population.
In Figure 13, the top three patterns are real-world Batik, while the three under-
neath were presented in initial populations.

Li et al (2009) reports on five experiments using their system, aimed partly at
evaluating the outbreeding technique; each experiment ran the process twice, with
and without outbreeding (but starting from the same initial populations). They
measured, in particular, the time investment of the user before a satisfactory de-
sign was achieved. They found that, with the outbreeding mechanism in place, the
design process took on average only 54% of the time taken using the interactive
system without outbreeding. Further, the time with outbreeding was roughly 17%
of the time it tends to take to design a new Batik pattern by hand. Further experi-
ments confirmed in other ways that the outbreeding mechanism was effective in
producing patterns, throughout the process, that tended to be evaluated well by us-
ers. Figure 14 shows the initial population used for all of these experiments, and
Figure 15 shows some final-population designs that satisfied the users (produced
with the out-breeding mexhanism in opeation), converted into tesselations.

59

Fig. 14 initial populations used in Li et al’s experiments.

Fig 15; tesselations of final-population designs using the Batik pattern interac-

tive evolutionary system (with the outbreeding mechanism).

Final points and notes

The interactive Batik design system described and discussed here is a nice exam-
ple of how interactive evolutionary computation is beginning to be used in an in-
creasing number of applications that involve creativity. Experience with this sys-

60

tem so far shows how it can both speed up and invigorate the process of generat-
ing interesting new patterns in the Batik ‘domain’. One of the keys to success in
such enterprises is the wise design of the encoding, and we have seen a good ex-
ample of that in this case. Li et al (2009), as we have seen, also showed an innova-
tive approach to dealing with some of the ever-present problems (and hence, re-
search issues) in interactive evolution. The outbreeding mechanism was able to
enhance diversity in the process, at the same time as reducing the time (and hence
fatigue) of human users.

5.2 Novel Antennae for Satellites: Discarding the Rule Book

As elaborated further in Hornby et al (2006), current practice in antenna design
almost invariably involves designing and optimizing them by hand, and this ap-
proach is very limited as a way to develop new and better antenna designs. It re-
quires significant time and expertise from human experts in the domain. An ongo-
ing alternative in antenna design (in common with an increasing variety of such
specialist areas), is to investigate evolutionary algorithms for this purpose. This
has been happening since the early 1990s, with increasing success and take-up as
we have seen developments in processing power, and also improvements in the
quality of software simulations of antenna performance. To date, many types of
antenna have been investigated by evolutionary design approaches. A particularly
interesting and useful aspect of this approach is the opportunity to to evolve an-
tenna designs specifically for performance in a particular environment, so that the
fitness function takes into account the effects of structures surrounding the an-
tenna’s intended position. This consideration of the immediate environment is ex-
tremely difficult for human expert antenna designers to take into account.

In this section, we summarise work reported in Hornby et al (2006) and
other publications from that group, which describe the experience and results of
using evolutionary algorithms to evolve antennas for spacecraft associated with a
number of NASA missions, in particular two antennas designed for NASA’s
Space Technology 5 (ST5) mission, and an antenna for a Tracking and Data Relay
Satellite (TDRS) for a mission due to operate in after 2010.

Antennas for NASA’s Space Technology 5 Mission

NASA’s Space Technology 5 (ST5) mission had the goal of launching multiple
miniature spacecraft to test various innovative concepts for application in future
space missions. Three miniaturized satellites were involved in ST5, called micro-
sats, designed to measure the effects of solar activity on the Earth’s magneto-
sphere. These micro-sats were approximately half a metre across and half a metre
high, weighing around 25 kilos when fully fuelled, and each had two antennas,
centered on the top and bottom. They were originally designed to operate in a geo-

61

synchronous orbit at approximately 35,000 km above Earth, and had a stringent
set of requirements for the communication antennas. Details of the specific re-
quirements are Hornby et al (2006), and we need not discuss them here, but (in
common with similar antenna design tasks), these requirements were in terms of
constraints on the gain patterns, voltage standing wave ratios, and input imped-
ances, at both the transmot and receive frequencies; also the mass of each antenna
had to be below 165g, and the shape had to fit within a cylinder with height and
diameter both below 16cm.

To meet the initial design requirements in this instance, the team decided to
constrain their search to a monopole wire antenna with four identical arms,
equally spaced around the vertical axis. An evolutionary algorithm was therefore
set to work to evolve the shape of a single arm, which in turn defined the entire
antenna. Importantly, the encoding used by the team was one that allowed almost
arbitrary designs for the arm, with no reference to the limited collection of known
standard designs. Essentially it was a genetic programming style approach, in
which each node in a tree was an antenna-construction operator. Interpreting the
tree top down from the root node, and given an initial ‘feed-wire’ of a given small
length and orientation, the operators and leaves of the tree effectively specified
three-dimensional movements in the style of ‘turtle graphics’, adding sections of
wire of specific lengths and orientations to the current partial design.

Having decoded a tree into an antenna design, the antenna was simulated with
means of a sophisticated simulation platform, which yielded estimated perform-
ance characteristics which then had to be automatically evaluated against the de-
sign requirements. In common with the design requirements themselves, readers
are referred to Hornby et al (2006) for details of the fitness function, but suffice it
to say that the requirements themselves and the simulation results are both curves
involving performance characteristics at different spatial locations and frequen-
cies, and the fitness function involved such things as estimates of distances be-
tween desired and actual curves, weighted in specific ways according to the im-
portance of different requirements.

 It so happened that the requirements for the ST5 mission changed while these
initial antennas were being designed. New mission requirements effectively forced
a single-arm antenna design, and this led to the need to redesign the fitess function
for the antenna design process. In the operating environment context of Hornby et
al’s work, it is of particular interest and importance to note that an extremely ef-
fective antenna design was produced for the initial set of requirements, in a short
time when compared with the human expert design process. Moreover, with mis-
sion requirements altered partway through the process, the evolutionary algorithm
approach needed only relatively minor modification and was still able to quickly
produce an effective antenna for the new requirements.

To meet the initial mission requirements, the best evolved antenna design that
emerged, ‘ST5-3-10’ is shown in figure16 on the left. This antenna met the initial
mission requirements, and was indeed all set to be used on the mission itself, until
the mission’s orbit (and hence many other aspects) was revised. The new evolved

62

best antenna following the new requirements was the one shown on the right in
figure 16, so-called ‘ST5-33-142-7’. The latter antenna design, which was deliv-
ered for prototype fabrication less than a month after the changes to the ST5 mis-
sion requirements, was found fully compliant with specifications when the proto-
type was tested, and on March 22nd 2006 the ST5 mission was successfully
launched into space using evolved antenna ST5-33-142-7. Hornby et al (2006) re-
port that this was the first computer-evolved antenna to be deployed for any appli-
cation and the first evolved hardware in space. We note that this is clearly valid, if
we confine ourselves to hardware produced, by whatever means, in the local Solar
system; but we don’t know about elsewhere.

Hornby et al (2006) note that the evolved antenna has a number of advantages
over human-designed alternatives. These advantages include reduced power con-
sumption, fabrication time, and complexity, and improved performance. The ST5
mission managers had actually hired a contractor to produce antenna designs in
addition to awaiting the findings of the evolutionary approach. The contractor
used conventional design practices, and came up with a variant of one of the many
standard designs. When this design was compared in simulation with the evolved
design, it was found that if an ST5 craft used two evolved antennas (recall that
each craft had two antennas), efficiency would be 93% improved over the situa-
tion where the craft instead used two of the contractor-designed antennas. Among
other explication of the various benefits in Hornby et al (2006), we note that the
evolved antenna required approximately three person-months to design and fabri-
cate, versus approximately five months for the human-designed one.

Figure 16. Photographs, reproduced with permission, of prototype fabricatede-
volved antennas. Left: the best obtained antenna for the initial ST5 mission re-
quirements, ST5-3-10; right: the best obtained following the revised specifica-
tions, ST5-33-142-7.

63

An Antenna for NASA;s TDRS-C Communications satellite

Later in 2006, the same team evolved an ‘S-band phased array’ antenna element
design for NASA’s TDRS-C communications satellite, part of a mission that had
been scheduled for launch sometime between 2010 and 2020. This time the evolu-
tionary algorithm was combined with a hillclimbing algorithm, and the antenna
design was somewhat more constrained towards a standard style; nevertheless the
resulting design was simpler than the potential competing human designed anten-
nas, with consequently reducing testing and integration costs.

As Hornby et al (2006) reports, the TDRS-C mission will carry several anten-
nas, including among them a 46 element phased array antenna. Readers unfamiliar
with the terminology may see Figure 17, from which it becomes clear what the in-
diidual elements are in the phased array. The design and performance specifica-
tions for this antenna involved electromagnetic performance issues, as was the
case for the ST5 missions, but also certain constraints on the elements and their
spacing.

A simpler encoding was used by the team for this case, in which an antenna
was represented as a fixed length list of real numbers. Antenna parameters were
determined from these simple ‘genes’ in a fairly straightforward way, in which the
majority of successive pairs of genes referred to the distance to the next element
along the antenna’s axis, followed by the size of the next element.

In a similar process used for the ST5 mission antennas, the team set up around
150 separate experiments that each ran an evolutionary algorithm for a total of
50,000 evaluations (antenna simulations) each – the separate evolutionary algo-
rithms s each represented a random point in parameter space, with different popu-
lation sizes, mutation rates, and so forth. The best antennas from each of these 150
runs was then subject, in a second stage to further improvement via a hillclimbing
algorithm for 100,000 evaluations. Finally, the best of these were subject to fur-
ther hillclimbing.

At the end of this process, most of the evolved antennas were very close to
meeting the rather stringent mission specifications, and one of the evolved anten-
nas exceeded the specifications. That one, shown in Figure 17, was further ana-
lysed by accurate electromagnetics software (WIPL-D version 5.2), and subjected
to some fine tuning via another evolutionary algorithm, and finally a resulting an-
tenna design was fabricated and tested. The final design, shown in Figure 17, ex-
ceeds the design specifications, and it remains up to the mission leaders whether it
is deployed in the TDRS-C mission.

64

Figure 17. Best evolved TDRS-C antenna

Concluding points

In this section we have described the work of Hornby et al (2006) in evolving an-
tennas for two NASA missions. For both the ST5 mission and the TDRS-C mis-
sions it took approximately three months to set up our evolutionary algorithms and
produce the initial evolved antenna designs. Following the revision in ST5 re-
quirements, it took roughly one month for the team to evolve antenna ST5-
33.142.7, and the team are indeed very confident (Hornby et al, 2006) that a
change in requirements for the TDRS-C mission will result in a similarly fast re-
design of an antenna meeting the new requirements.

As well as benefits in relative speed and ease of design, the evolutionary algo-
rithm approach to designing antennas leads to many other advantages over manual
design. One such advantage is the potential for performance characteristics that
are simply unachievable with conventional design styles. Antenna design is one of
several areas in which there is potential for unexplored areas of design space to be
examined. These are areas of design space that human experts tend to steer away
from, since the current state of theory and understanding is quite limited to the
properties of a range of conventional designs. Evolutionary algorithms are far less

65

wary of such ill-understood areas of design space, and, by finding exemplars in
such areas that have outstanding performance (such as the ST5 designs discussed
in this section), may lead to more systematic study of such regions of the design
space, leading to new design principles and new scientific insights.

5.3 Evolution in Software Design

As noted in Arcuri & Yao (2008), software testing is used to find bugs in com-
puter programs (Myers, 1979). Even though successful testing is no guarantee that
the software is bug-free, testing increases confidence in the software’s reliability,
and is an integral and extremely important part of modern software engineering.
However, testing is very expensive, time consuming and tedious, amounting to
around half the total cost of software development (Beizer, 1990). This investment
in testing is not begrudged, since releasing bug-ridden software can be immensely
more costly in the long run. In fact, it is often argued that far more testing should
be done than is usually the case – in the USA, for example, it is estimated that
around $20 billion per year could be saved if better testing was done (Tassey,
2002). The need for cheaper and faster testing is clear.

In this section we look at recent work by Arcuri & Yao (2008), which is
part of an area of research called search-based software engineering. In this par-
ticular thread, the idea is to investigate the use of evolutionary computation to im-
prove aspects of the testing process. In particular, Arcuri & Yao (2008) are con-
cerned with unit tests (Ellims et al, 2006). This relates to writing small pieces of
software code that test as many parts of the project as possible. For example, the
test code might call, with specific inputs, a java method that adds two integers; the
returned value is then checked against the expected value. If there is a difference,
we can be sure that there is something wrong with the code. However, since test-
ing all possible inputs of a method is usually infeasible, a suitable subset of tests
needs to be chosen. Writing code for such ‘unit tests’ requires some way to decide
on a good collection of specific input cases, and is a very resource-hungry exer-
cise.

Automated ways to generate unit tests are clearly of interest to the soft-
ware design process, and this is the topic of Arcuri & Yao’s work (2008). Various
approaches have been studied to automatically generate unit tests (McMinn,
2004), but there is no known way to generate an optimal set of unit tests for any
given program. Also, comparatively little has been done in this area for object-
oriented (OO) software. In this section, we describe Arcuri & Yao’s recent work
(2008) which had a focus is on a particular type of OO software construct: con-
tainers. These are data structures (like arrays, lists, vectors, trees, etc.) designed to
store arbitrary types of data. What usually distinguishes a container class is the
computational cost of operations like insertion, deletion and retrieval of data ob-
jects. They are used in almost all OO software, so their reliability in commercial
code is paramount.

66

Arcuri & Yao (2007) presented a framework for automatically generating
unit tests for container classes, in the context of white box testing. They analysed a
number of different search algorithms, and compared them with more traditional
techniques. They used a search space reduction that exploits the characteristics
ofthe containers. Without this reduction, the use of search algorithms would have
required too much computational time.

About testing java containers

In each of the many kinds of java containers (arrays, vectors, lists, trees, and so
forth), we usually expect find methods such as insert, remove and find. The im-
plementations (and hence computational expense) of these methods can varymuch
between containers; also, the behaviour of such methods is often a function of the
container’s current contents. This situation considerably complicates the design of
unit tests (McMinn & Holcombe, 2003; 2005) – just because we find that a
method yields the correct result with certain inputs, that does not mean it will al-
ways give the correct result with those inputs, perhaps depending on the current
contents of the container.

The approach to testing containers therefore explicitly considers the se-
quence Si, of function calls. During a testing operation on such a container, the
container is referred to here as a ‘Container under Test’ (CuT), and a function call
(FC) can be seen as a triple:

<object reference; function name; input list>
This simply refers to calling the given function (method) of the given object (con-
tainer) with the given list of inputs. In Arcuri & Yao’s work, the CuT is subjected
to a single sequence Si of such FCs, rather than a different sequence for each of the
function’s branches. Natuallu, in the unit test java code, each FC is embedded in a
different try/catch block, so that the paths that throw exceptions do not forbid the
execution of the subsequent FCs in the sequence.

 The goal in testing is to achieve a maximal level of ‘coverage’; broadly
speaking, this refers to the amount of code that is tested. All software is replete,
for example, with case statements and “if X then Y else ..” style branches, and,
without suitable design of test cases, many branches of the code may end up not
being followed during the testing process. Given a suitable coveage-related crite-
rion (there are several), it is then important to aim for the short sequence of func-
tion calls while achieving excellent coverage. Arcuri & Yao (2008) used branch
coverage as their coverage criterion, although their approach is easily extensible
to other coverage criteria.

In Arcuri & Yao’s formulation, they consider a coverage function cov(Si)
which, in relation to a given CuT, returns the number of code branches covered
when tested with the sequence of functional calls Si. Where len(Si) is simply the
number of function calls in the sequence, Arcuri & Yao attempt to optimise both
cov(Si) and len(Si), preferring a shorter sequence in the case that the coverage of
two sequences is the same. To some extent it is clear that this is a multi-objective
problem (see Deb (2001), and sections 3.1 and 3.2), however Arcuri & Yao indi-

67

cate a definite order of preference in this domain (coverage more important than
length), which influences their decision to treat it as a single objective problem.
They therefore attempted to find sequences that optimised cov(Si) + 1/(1+len(Si)),
although with various modifications and adaptations detailed in Arcuri & Yao
(2008).

Smoothing the test landscape

Arcuri & Yao (2008) detail several complex factors involved in the enterprise of
treating unit testing as an application for evolutionary computation, along with
their solutions to these issues. Here we will only discuss one such issue, of par-
ticular pertinence to the ‘engineering’ of problems when considering artificial evo-
lution of solutions. This relates to helping the evolutionary process by making the
fitness assessments more informative. The problem in this case that the number of
branches covered (i.e. the number returned by cov(Si)) does not give any indica-
tion of how close the sequence Si is at being able to cover additional branches. Put
another way, two sequences Si and Sj may have the same coverage value, but one
may be much ‘nearer’ than other (i.e. requiring a mutation to just one of its FCs)
to a sequence that has higher coverage.

In many branch statements, in which the predicates accessing the branch
are quite simple, random sequences of FCs will have little difficulty finding inputs
that force coverage of all its branches (this is why random search, as we see later,
tends to achieve good coverage). But when the predicate is more complex, it is
typically the case that only a very small portion of the space of potential inputs
will lead to certain branches being covered. search is likely to fail.

One approach to this issue is to consider the Branch Distance (BD) (Ko-
rel, 1990). Any particular branch will be entered if a given statement is true (such
as 0.2<x<0.3); the BD is a real number that tells us how far the relevant predicate
is from being true (in the latter case, BD will be low if x=0.4 and high if x=10).
Making use of such information in the coverage metric would help the evolution-
ary search process, by helping to distinguish between pairs of sequences that
would otherwise have the same simple coverage value. Branch Distance is the
topic of much research effort in Software Testing (e.g. Baresel et al, 2002; Har-
man et al, 2002; McMinn & Holcombe, 2004). This research tends to consider ap-
proaches in which different test sequences focus on different branches, without
considering the issues involved with the precise sequencing of function calls af-
fecting the results. A difference in Arcuri & Yao’s approach is the attempt to
evolve a single test sequence that covers all branches.

The technique they adopt is to modify the cov(Si) defined earlier, incor-
porating within it a simple measure of branch distance for any uncovered branch,
which takes into account how many times the predicate associated with a branch is
evaluated. For example, if only one FC in the sequence invokes a predicate with
two branches, then only one branch will be covered. However if in another se-
quence there are two FCs that test this predicate, both invoking the same branch,
then it can be said that this second sequence is closer to covering the second

68

branch, since (if coverage of this other branch is possible at all) this requires only
mutation of the input list of one of the FCs in the sequence. There are various
ways in which the coverage metric could be modified to take branch distance into
account, and it turned out important to use different variations in different circum-
stances, as is mentioned later, and of course discussed more fully in Arcuri & Yao.

Evaluating natural computation for this task

Arcuri & Yao (2008) tested five approaches: random search, (RS), hill climbing
(HC), simulated annealing (SA), a genetic algorithm (GA) and a memetic algo-
rithms (MA). RS is a natural baseline used to understand the effectiveness of other
presumably more sophisticated algorithms, and often it bring surprisingy good re-
sults. In the current context, we can expect RS to give good results in terms of
coverage. The RS worked simply by repeatedly generating random sequences,
evaluating them, and returning the best at the end of the process; for pragmatic
reasons it was necessary to specifiy a maximum length for each sequence.

For the other methods, it was necessary to design neighbourhood (and ge-
netic) operators that would operate on sequences to produce variants. In all cases,
the encoding of a sequence of FCs was entirely straightforward. The ‘chromo-
some’ is simply an explicit (variable length) sequence of FCs, each a triple as des-
cibed above. For neighbourhood (mutation) operators, the natural choice was
made to use operators of the following type:

• Removing an FC from a sequence
• Inserting a new FC into the sequence, in a random position.
• Modifying the parameters of a randomly chosen FC in a sequence.

In the genetic algorithm, single point crossover was also used, in which a child se-
quence was generated by using the first K (randomly chosen) FCs in one parent,
and completing the child with the FCs from position K+1 onwards in the second
parent. The memetic algorithm was a simple hybrid of the genetic algorithm and
hillclimbing, which repeatedly ran hillclimbing on each new individual produced
by the genetic algorithm until a local optimum was reached. Although the RS, HC,
GA and MC were fairly standard, In their simulated annealing (SA) implementa-
tion, various modifications and sophistications were included to control the accep-
tance of new mutants during the search, in attempt to balance the coverage and
length considerations. These details, and of course other parameteric details of all
of the algorithms, are explained in Arcuri & Yao (2008).

69

Table 6: Some results from Arcuri & Yao (2008), showing coverage and lengths obtained
when evolving sequences of function calls for five separate containers, using five algo-
rithms, random search (RS), hill-climbing (HC), simulated annealing (SA), genetic algo-
rithm (GA) and memetic algorithm (MA).

Container Algorithm Mean
Coverage

Variance in
coverage

Mean
length

Variance in
length

RS 85.21 1.52 56.99 7.73
HC 100.00 0.00 47.67 1.05
SA 99.99 0.01 45.76 1.11
GA 99.99 0.01 46.87 1.63

Vector

 MA 100.00 0.00 47.89 2.64
RS 69.96 1.82 55.27 14.00
HC 84.00 0.00 38.48 10.27
SA 82.47 2.25 33.60 5.29
GA 83.83 0.26 36.66 3.64

LinkedList

 MA 84.00 0.00 36.43 3.58
RS 92.92 1.17 54.45 25.97
HC 106.00 0.00 35.25 0.19
SA 105.84 0.74 34.98 0.77
GA 101.14 6.50 31.10 6.31

Hashtable

 MA 106.00 0.00 35.01 0.01
RS 151.94 5.85 54.11 26.87
HC 188.76 0.71 51.23 10.08
SA 184.19 5.75 40.68 5.88
GA 185.03 3.46 42.14 8.44

TreeMap

 MA 188.86 0.65 50.55 10.31

Arcuri & Yao (2008) performed tests on separate java containers that imple-
mented Vector, Stack, LinkedList, Hashtable and TreeMap respectively, from the
Java API 1.4, package java.util, and BinTree and BinomialHeap from the exam-
ples in Visser et al (2006). Here we describe only a selection of their results, fo-
cussing on the four cases which involved the largest number of public functions
under test (PuT). These were: Vector (34 PuT), Linked List (20 PuT), Hashtable
(18 PuT) and TreeMap (17 PuT), respectively with 1019, 708, 1060 and 1636
lines of code, and achievable coverage of 100, 84, 106 and 191 branches. The lat-
ter figures for achievable coverage are based on Arcuri & Yao’s experience of
around a year’s worth of experimentation, with inspection of the container code
confirming that non-covered branches seem unreachable.
 Each of the five algorithms were tested, to a limit of 100,000 sequence
evaluations per trial, using 100 trials per algorithm and container pair; a selection
of Arcuri & Yao’s results results are summarised in Table 6. When we consider
the coverage results in the context of the highest achievable coverage mentioned
above, it turns out that only TreeMap presents a particularly difficult coverage
task. The MA achieves the best mean coverage result on TreeMap, and indeed the
MA is reported by Arcuri & Yao (2008) as statistically superior to the other algo-

70

rithms in all cases except Vector (based on a Mann Whitney U test). In all con-
tainer cases except Vector (including the others reported in Arcuri & Yao (2008)) ,
the MA shows either the best mean coverage, or it shares first position for cover-
age while having a better mean length. Not surprisingly, random search tends to
have worse performance than the other algorithms, although it can often achieve
reasonable coverage. When coverage from RS is good, however, the length of the
sequence of FCs tends to be poor; this is readily understood giventh enature of the
‘difficult’ branches in testing, as also indicated above. Finally it should be pointed
out that Arcuri & Yao’s system was not able to generate inputs that could cover all
branches in the CuT; for example, for pragmatic reasons, branches in private
methods were not considered, while around 10% of the public methods were not
directly callable.

On related and similar work

Arcuri & Yao (2008) point out the difficulties in comparing their approach with
traditional systems in software testing, including the fact that there is no common
benchmark scenario, and no reasonable way to replicate the ways that other au-
thors instrumented the software to be tested. However they point out that tradi-
tional techniques (e.g. King, 1976; Doong & Frankl, 1994; Buy et al, 2000; Mari-
nov et al, 2001; Boyapati et al, 2002; Visser et al, 2004; Xie et al, 2004; 2005)
tend to have considerable challenges with scalability, and invariably rely on con-
siderable prior effort, such as the need to generate algebraic specifications or other
formal representations of the functions to be tested; this is particularly tricky when
predicates are highly nonlinear, involve loops, non-linear data types, and so forth.
Arcuri & Yao’s evolutionary computation based approach, however, needs no
such prior specification effort, and is applicable to any container. Meanwhile, al-
though there are many difficulties with direct comparison with results from tradi-
tional techniques reported in the literature, the evolutionary computing approach,
especially the memetic algorithm, seems to have significant benefits in terms of
speed. However much further work is warranted in this field, including hybrids of
natural computation and traditional approaches.

As noted by Arcuri & Yao, the use of natural computation in software
testing has been gaining a research following in recent years. Other examples in-
clude Tonella (2004) who used evolutionary algorithms for generating unit tests of
Java programs, while Wappler andWegener (2006) used strongly typed genetic
programming (STGP) also for testing Java programs. Seesing (2006) also investi-
gated STGP for a similar purpose, while Liu et al. (2005) used a hybrid approach,
involving ant colony optimisation (see the Swarm Intelligence chapter in this vol-
ume) to optimise the sequence of function calls, and a multi-agent evolutionary
algorithm to optimise the input parameters of those function calls. Meanwhile,
Arcuri & Yao’s research described in this section began with presenting a new en-
coding and search operators and a dynamic search space reduction method for
testing OO containers (Arcuri & Yao, 2007), also testing Estimation of Distribu-
tion Algorithms on this problem (Sagarna et al, 2007).

71

Summary thoughts

In this section we have seen an example of how evolutionary computation is be-
ginning to be used in software engineering. The work we focussed on showed a
comparison with a selection of other methods, and also discussed comparisons
with standard techniques in the software engineering industry, and found advan-
tages for the evolutionary computation approach in both scenarios. The empirical
tests by Arcuri & Yao (2008) showed that their Memetic algorithm usually per-
forms better than the other algorithms tried. However, there remains clear chal-
lenges for improvement (e.g. the performance on the TreeMap container was not
completely satisfactory).
 Arcuri & Yao conclude, based on their results as well as the neighbouring
literature, that, in testing OO software, nature inspired algorithms seem to be bet-
ter than the standard techniques based on symbolic execution and state matching,
since they seem able to solve more complex test problems in less time. Arcuri &
Yao’s work also included the unusual approach of trying to cover every branch at
the same time with a single sequence. This has yet to be compared to the tradi-
tional approach of testing each branch separately.

 6 Concluding Notes

We have discussed a selection of application areas in which natural computation
shows its value in real-world enterprises of various sorts. Our selection has been
quite eclectic. Other authors will have chosen a different set; at another time, the
same authors will have chosen a different collection. The main message we mean
to convey by such statements is that, for the purposes of demonstrating the signifi-
cant impact and potential of natural computation in practice, there is certainly no
shortage of documented examples that could be selected. We have presented just
ten applications, ranging from specific problems to specific domains, and ranging
from cases familiar to the authors, to highlights known well in the general natural
computation community. However all of them share, we hope, the property of dis-
playing (each in their own way) a clear indication of the proven promise or great
potential for the impact of nature-inspired computation in high-profile and impor-
tant real-world applications. Similarly, we hope that these applications share the
property of being inspiring to both students and practitioners; many were selected
on the basis of proving particularly popular with our students, in the context of
getting them interested in the study of natural computation.
 When designing an article such as this, the first problem one faces is that
natural computation is almost too successful in practice. You may ask, for exam-
ple, why we do not mention more from the thousands of successful real-world ap-
plications of neural computation, or fuzzy systems? Well, first of all, we have in-

72

deed just mentioned them. But second of all, the positioning of this article in the
‘Broader Perspective’ volume suggests a focus on the novel and unusual; on the
less generally known, and on areas whose potential is clear, yet only beginning to
be realized in practice.

Naturally, therefore, the centre of gravity in this article has turned out to be
evolutionary computation. Sandwiched between the more familiar, tried and tested
topics of neural and fuzzy systems, and the several emerging areas of natural com-
putation that are currently less `on the map’ with application studies, evolutionary
computation is a highly flexible child of natural computation that excels in dis-
playing the promise for this field. But, in passing, we have seen, in Blondie24,
how different areas of nature-inspired computation collaborate to remarkable ef-
fect. We have also seen, in the aircraft maneuver study, and in our discussions of
super-heuristics, how learning classifier systems – themselves inspired by the
adaptive behaviour of intelligent organisms – contribute towards natural comput-
ing’s expanding gallery of successes. Meanwhile, other chapters in this volume
cover some of the successes of swarm intelligence, simulated annealing, artificial
immune systems, and more.

The real-world value of some of the more established natural computing tech-
niques has been proven to be unquestionably immense. It is worth pointing out
that this was never anticipated in the ‘early days’ for each individual technique. In
the case of neural computation, for example, Minsky and Papert’s analysis of the
capabilities of two-layer networks led (if not deliberately) to much skepticism and
delay in the exploration and take-up of neural networks for pattern recognition. In
evolutionary computation’s earliest days, the algorithms were usually considered
as intellectual curiousities, with the occasional promising application studies con-
sidered as one-offs. There seems to be a lesson here for the promise and potential
of the several less mature and emerging natural computing ideas – those discussed
in this volume, as well as others. In anticipation, we wait and see.

 References

Allen, F. & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules,
Journal of Financial Economics, 51:245-271.

Angeline, P. J. (1996). Genetic Programming’s Continued Evolution. Advances in Genetic
Programming, Vol. 2, editor, P. J. Angeline and K. Kinnear, Cambridge, MA: MIT
Press, pp. 89-110.

A. Arcuri and X. Yao (2007) A memetic algorithm for test data generation of object-
oriented software, in: IEEE Congress on Evolutionary Computation (CEC), 2007, pp.
2048–2055.

A. Arcuri, X. Yao (2008) Search based software testing of object-oriented containers, In-
formation Sciences 178: 3075–3095

M. Ayob and G. Kendall, A Monte Carlo Hyper-Heuristic to Optimise Component Place-
ment Sequencing for Multi Head Placement Machine, In Proceedings of the Int. Conf.
on Intelligent Technologies, 2003, 132–141.

73

Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. (1998). Genetic Programming -
An Introduction: On the Automatic Evolution of Computer Programs and Its Applica-
tions, San Francisco: Morgan Kaufmann

A. Baresel, H. Sthamer, M. Schmidt (2002) Fitness function design to improve evolution-
ary structural testing, in: Genetic and Evolutionary Computation Conference (GECCO),
pp. 1329–1336.

Becker, L.A. & Seshadri, M. (2003a). Comprehensibility and Overfitting Avoidance in Ge-
netic Programming for Technical Trading Rules, Worcester Polytechnic Institute, Com-
puter Science Technical Report WPI-CS-TR-03-09.

Becker, L.A. & Seshadri, M. (2003a). Cooperative Coevolution of Technical Trading
Rules, Worcester Polytechnic Institute, Computer Science Technical Report WPI-CS-
TR-03-15.

Becker, L.A. & Seshadri, M. (2003c). GP-evolved technical trading rules can outperform
buy and hold, In Proc. 6th Int’l Conf. on Computational Intelligence and Natural Com-
puting, North Carolina USA, September 26-30 2003.

B. Beizer (1990) Software Testing Techniques, Van Nostrand Rheinhold, New York.
B. Bilgin, E. Ozcan, E.E. Korkmaz (2006) An Experimental Study on Hyper-Heuristics and

Final Exam Scheduling, In Proceedings of the 2006 International Conference on the
Practice and Theory of Automated Timetabling, 2006, 123–140

G. E. P. Box (1957), “Evolutionary operation: A method for increasing industrial produc-
tivity,” Appl. Stat., vol. 6, pp. 81–101,

G. Box, W. Hunter, and J. Hunter (2005), Statistics for Experimenters: Design, Innovation,
and Discovery, 2nd ed. New York: Wiley, 2005.

C. Boyapati, S. Khurshid, D. Marinov, Korat (2002) Automated testing based on java
predicates, in: Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA).

Brabazon, A. & O'Neill, M. (2005). Biologically Inspired Algorithms for Financial Model-
ling (Natural Computing Series), New York: Springer.

J. Branke and K. Deb (2005), “Integrating user preferences into evolutionary multi-
objective optimization,” in Knowledge Incorporation in Evolutionary Computation.
New York: Springer, pp. 461–477.

D. Brockhoff and E. Zitzler (2006) “Are all objectives necessary? On dimensionality reduc-
tion in evolutionary multiobjective optimization,” in Parallel Problem Solving from Na-
ture—PPSN IX, vol. 4193, Lecture Notes in Computer Science. New York: Springer,
2006, pp.533–542.

E.K. Burke, G. Kendall, J. Newall, E.Hart, P. Ross, and S. Schulenburg (2003), Hyper-
heuristics an Emerging Directionin Modern Search Technology, Handbook of Metaheu-
ristics (eds Glover F. and Kochenberger G. A.), 2003, 457–474.

E.K.Burke, B.L.MacCarthy, S.Petrovic and R.Qu. (2002) Knowledge Discovery in a Hy-
perheuristic for Course Timetabling using Case Based Reasoning. in the Proceedings of
the Fourth International Conference on the Practice and Theory of Automated Time-
tabling (PATAT’02),

U. Buy, A. Orso, M. Pezze (2000), Automated testing of classes, in: Proceedings of the In-
ternational Symposium on Software Testing and Analysis (ISSTA), 2000, pp. 39–48.

L. Chapman, J.E. Thornes, and A.V. Bradley (2002), “Sky-view factor approximation using
GPS receivers,” International Journal Climatology, vol. 22, no. 5, pp. 615–621.

Chellapilla K and Fogel DB (1999) "Evolution, Neural Networks, Games, and Intelli-
gence," Proc. IEEE, Vol. 87:9, Sept., pp. 1471-1496.

Chellapilla K and Fogel DB (1999b) "Evolving Neural Networks to Play Checkers without
Expert Knowledge," IEEE Trans. Neural Networks, Vol. 10:6, pp. 1382-1391.

74

Chellapilla K and Fogel DB (2001) “Evolving an Expert Checkers Playing Program with-
out Using Human Expertise,” , IEEE Transactions on Evolutionary Computation, Vol.
5:4, pp.422-428.

Chen, S. H. (2002). Genetic Algorithms and Genetic Programming in Computational Fi-
nance, Boston, MA: Kluwer.

Chen, S. H. & Yeh, C. H. (1996). Toward a Computable Approach to the Efficient Market
Hypothesis: An Application of Genetic Programming, J. of Economic Dynamics & Con-
trol, 21: 1043-1063.

Cheng, S. L. & Khai, Y. L. (2002). GP-Based Optimisation of Technical Trading Indicators
and Profitability in FX Market, Proceeding of the 9th International Conference on Neu-
ral Information Processing (ICONIP’ 02), Vol. 3, pp. 1159-1163.

H. Chernoff, (1972) Sequential Analysis and Optimal Design (SIAM Monograph).
Philadephia, PA: SIAM, 1972.

C. Coello (2000), “An updated survey of GA-based multiobjective optimization tech-
niques,” ACM Comput. Surv. (CSUR), vol. 32, no. 2, pp. 109–143, 2000.

C. Coello, (2006) “Twenty years of evolutionary multi-objective optimization: A historical
view of the field,” IEEE Comput. Intell. Mag., vol. 1, no. 1, 2006.

David Corne, Kalyanmoy Deb, Peter Fleming and Joshua Knowles (2003) ‘The good of the
many outweighs the good of the one: evolutionary multiobjective optimization’, coN-
NectionS, 1(1): 9-13, ISSN 1543-4281.

Corne, D., Jerram, N., Knowles, J., Oates, M. (2001) PESA-II: region-based selection in
evolutionary multiobjective optimization (2001) in L. Spector, E.D. Goodman, A. Wu,
W.B. Langdon, H-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon, E.
Burke (eds.) Proceedings of GECCO-2001: Genetic and Evolutionary Computation
Conference, Morgan Kaufmann, pp. 283—290.

David Corne, Martin Oates and Douglas Kell (2003b) Fitness gains and mutation patterns:
deriving mutation rates by exploiting landscape data, in K De Jong, R Poli and J
Rowe, eds., Foundations of Genetic Algorithms 2003, San Francisco, Morgan Kauf-
mann, pp. 347—364.

D. Cornford and J.E. Thornes (1996), “A comparison between spatial winter indices and
expenditure on winter road maintenance in Scotland,” International Journal of Climatol-
ogy, vol. 16, pp. 339–357.

P.Cowling, G.Kendall, E.Soubeiga. (2000) A Hyperheuristic Approach to Scheduling a
Sales Summit. In LNCS 2079, Practice and Theory of Automated Timetabling III :
Third International Conference, PATAT 2000, Konstanz, Germany, August 2000, se-
lected papers (eds Burke E.K. and Erben W), Springer-Verlag, pp 176-190.

P.Cowling, G.Kendall and E.Soubeiga. (2002) Hyperheuristics: a robust optimisation
method applied to nurse scheduling. Technical Report NOTTCS-TR-2002-6, University
of Nottingham, UK, School of Computer Science & IT.

S.E.Cross and E.Walker (1994). Dart: applying knowledge-based planning and scheduling
to crisis action planning. In M.Zweben and M.S.Fox, editors, Intelligent Scheduling.
Morgan Kaufmann.

Datta, R., Deb, K. (2009) A Classical-cum-Evolutionary Multi-objective Optimization for
Optimal Machining Parameters, in Proc of NABIC 2009, IEEE CIS Press.

Z. S. Davies, R. J. Gilbert, R. J. Merry, D. B. Kell, M. K. Theodorou, and G. W. Griffith,
(2000) “Efficient improvement of silage additives by using genetic algorithms,” Appl.
Environ. Microbiol, pp. 1435–1443, Apr. 2000.

K. Deb (1997). Mechanical component design using genetic algorithms. In D. Dasgupta
and Z. Michalewicz, editors, Evolutionary Algorithms in Engineering Applications,
pages 495—512, New York: Springer-Verlag.

K. Deb (2000). An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering, 1862{4):311—338.

75

Deb, K. (2001) Multi-objective optimization using evolutionary algorithms, Wiley.
Farnsworth, G. V., Kelly, J. A., Othling, A. S. & Pryor, R. J. (2004). Successful Technical

Trading Agents Using Genetic Programming, SANDIA Report SAND2004-4774,
Sandia National Laboratories.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan (2002). A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182—197.

K. Deb and A. Kumar (1995). Real-coded genetic algorithms with simulated binary cross-
over: Studies on multi-modal and multi-objective problems. Complex Systems,
9(6):431—454.

Deb, K. and Srinivasan, A. (2005). Innovization: Innovation of design principles through
optimization. KanGAL Report No. 2005007.

Deb, K. and Srinivasan, A. (2006). Innovization: Innovating design principles through op-
timization, in Proc. GECCO 2006, pp. 1629—1636, ACM, NY.

R. Doong, P.G. Frankl (1994), The astoot approach to testing object-oriented programs,
ACM Transactions on Software Engineering and Methodology, pp. 101–130.

M. Ellims, J. Bridges, D.C. Ince (2006) The economics of unit testing, Empirical Software
Engineering 11 (1): 5–31.

J. R. G. Evans, M. J. Edirisinghe, and P. V. C. J. Eames, (2001) “Combinatorial searches of
inorganic materials using the inkjet printer: Science philosophy and technology,” J. Eur.
Ceramic Soc., vol. 21, pp. 2291–2299, 2001.

H-L Fang, P.M.Ross and D.Corne (1994) A Promising Hybrid GA/Heuristic Approach for
Open-Shop Scheduling Problems'', in Proceedings of ECAI 94: 11th European Confer-
ence on Artificial Intelligence, A. Cohn (ed), pp 590-594, John Wiley and Sons Ltd.

R. Fisher (1971), The Design of Experiments, 9th ed. New York: Macmillan.
D. Fogel, (1998) Evolutionary Computation. The Fossil Record. Selected Readings on the

History of Evolutionary Computation. IEEE Press, 1998.
Fogel, D.B. (2002) "Blondie24: Playing at the Edge of AI", Morgan Kaufmann Publishers,

Inc., San Francisco, CA. ISBN 1-55860-783-8
Fogel DB, Hays TJ, Hahn SL, and Quon J (2004) "A Self-Learning Evolutionary Chess

Program," Proceedings of the IEEE, Vol.92:12, pp. 1947-1954..
Fogel DB, Hays TJ, Hahn SL, and Quon J (2006) "The Blondie25 Chess Program Com-

petes Against Fritz 8.0 and a Human Chess Master," Proceedings of 2006 IEEE Sympo-
sium on Computational Intelligence & Games, S. Louis and G. Kendall (eds.), IEEE,
Reno, NV, pp. 230-235.

C. Fonseca and P. Fleming, (1995) “An overview of evolutionary algorithms in multiobjec-
tive optimization,” Evol. Comput., vol. 3, no. 1, pp. 1–16, 1995.

C. Fonseca and P. Fleming (1998), “Multiobjective optimization and multiple constraint
handling with evolutionary algorithms. I. A unified formulation,” IEEE Trans. Syst.,
Man, Cybern. A, vol. 28, no. 1, pp. 26–37, 1998.

Fukunaga, A. (2008) Automated Discovery of Local Search Heuristics for Satisfiability
Testing, Evolutionary Computation, 16(1): 31—61.

Fyfe, C., Marney, J. P. & Tarbert, H. (1999). Technical Trading versus Market Efficiency:
A Genetic Programming Approach, Applied Financial Economics, 9: 183-191.

I.P. Gent and T. Walsh. (1993) Towards an understanding of hill–climbing procedures for
SAT. In Proceedings of AAAI’93, pages 28–33. AAAI Press / The MIT Press, Menlo
Park, CA.

B.Giffler and G.L. Thompson. (1960) Algorithms for solving production scheduling prob-
lems. Operations Research, 8(4): pp 487-503.

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley.

76

D. E. Goldberg (2002) The design of innovation: Lessons from and for Competent genetic
algorithms. Kluwer Academic Publishers.

J.Gratch, S.Chein, and G.de Jong (1993) Learning search control knowledge for deep space
network scheduling. In Proceedings of the Tenth International Conference on Machine
Learning, pp 135-142.

Grefenstette, J. J. (1988) Credit assignment in rule discovery systems based on genetic al-
gorithms. Machine Learning 3. pp. 225-246.

H. Handa, L. Chapman, and X. Yao (2005), “Dynamic salting route optimisation using evo-
lutionary computation,” Proceedings of the 2005 Congress on Evolutionary Computa-
tion, vol. 1, pp. 158–165.

Handa, H., Chapman, L., Yao, X. (2006) Robust Route Optimization for Gritting/Salting
Trucks: A CERCIA Experience, IEEE Computational Intelligence Magazine, February
2006, pp. 6—9.

M. Harman, L. Hu, R. Hierons, A. Baresel, H. Sthamer (2002), Improving evolutionary
testing by flag removal, in: Genetic and Evolutionary Computation Conference
(GECCO), 2002, pp. 1351–1358.

E. Hart and P.M.Ross (1998) A heuristic combination method for solving job-shop schedul-
ing problems. In A.E.Eiben, T.Back, M.Schoenauer, and H-P.Schwefel, editors, Parallel
Problem Solving from Nature V, LNCS 1498, pages 845-854. Springer-Verlag.

E. Hart, P.M.Ross, and J. Nelson (1998) Solving a real-world problem using an evolving
heuristically driven schedule builder. Evolutionary Computation, 6(1): pp 61-80.

Holland, J. H. (1992) Adaptation in Natural and Artificial Systems MIT Press.
Holland, J. H., Holyoak, K. J., Nisbett, R. E. and Thagard, P. R. (1986) Induction: Proc-

esses of inference, learning, and discovery. MIT Press, Cambridge, MA
Gregory S. Hornby, Al Globus, Derek S.Linden, and Jason D. Lohn (2006) Automated An-

tenna Design with Evolutionary Algorithms" in AIAA Space 2006, San Jose, CA.
W. G. Hunter and J. R. Kittrell. (1966). Evolutionary operation: A review. Technometrics

[Online]. 8(3), pp. 389–397. Available: http://www.jstor.org/stable/1266686.
B. K. Kannan and S. N. Kramer (1994). An augmented lagrange multiplier based method

for mixed integer discrete continuous optimization and its applications to mechanical
design. ASME Journal of Mechanical Design, 116(2):405—411.

Kerlogue, F., Zanetini, F. (2004) Batik: Design, Style and History. London: Thames and
Hudson.

J.C. King (1976) Symbolic execution and program testing, Communications of the ACM
(1976) 385–394.

C. G. Knight, M. Platt, W. Rowe, D. C. Wedge, F. Khan, P. J. Day, A. Mcshea, J. Knowles,
and D. B. Kell (2008), “Array-based evolution of DNA aptamers allows modelling of an
explicit sequence-fitness landscape,” Nucl. Acids Res., November 2008.

J. Knowles (2006), “ParEGO: A hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems,” IEEE Trans. Evol. Comput., vol. 10,
no. 1, pp. 50–66, 2006.

Knowles, J.D. (2009) Closed-Loop Evolutionary Multiobjective Optimization, IEEE Com-
putational Intelligence Magazine, August 2009, pp. 77—91.

B. Korel (1990) Automated software test data generation, IEEE Transactions on Software
Engineering, 870–879.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by means of
Natural Selection, Cambridge, MA: MIT Press.

P. Lacomme, C. Prins, and W. Ramdane-cherif (2004), “Competitive memetic algorithms
for arc routing problems,” Annals of Operations Research, vol. 131, pp. 159–185.

Lau, T.W.E., Ho, Y.-C.(1999) Super-heuristics and their application to combinatorial prob-
lems, Asian Journal of Control, 1(1):1—13.

77

Li Y, Hu CJ, Yao X. (2009) Innovative Batik design with an interactive evolutionary art
system. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 24(6): 1035–
1047 Nov. 2009

X. Liu, B. Wang, H. Liu (2005) Evolutionary search in the context of object oriented pro-
grams, in: MIC2005: The Sixth Metaheuristics International Conference.

Lo, A. W., Mamaysky, H. & Wang, J. (2000). Foundations of Technical Analysis: Compu-
tational Algorithms, Statistical Inference, and Empirical Implementation, The Journal of
Finance, 55:1705-1770, 2000.

Lohpetch, D., Corne, D. (2009) Discovering Effective Technical Trading Rules with Ge-
netic Programming: Towards Robustly Outperforming Buy-and-Hold, in World Con-
gress on Nature and Biologically Inspired Computing (NABIC) 2009, IEEE Press.

Lohpetch, D., Corne, D. (2010) Outperforming Buy-and-Hold with Evolved Technical
Trading Rules: Daily, Weekly and Monthly Trading, in EvoApplications, Proceedings of
EvoStar 2010, Springer LNCS.

Lutton, E. (2006) Evolution of fractal shapes for artists and designers, International Journal
on Artificial Intelligence Tools, 15(4): 651–672.

D. Marinov, S. Khurshid, Testera (2001) A novel framework for testing java programs, in:
IEEE International Conference on Automated Software Engineering (ASE).

Marney, J. P., Fyfe, C., Tarbert, H. & Miller, D. (2001). Risk Adjusted Returns to Techni-
cal Trading Rules: A Genetic Programming Approach, Computing in Economics and
Finance, Soc. for Computational Economics, Yale University, USA, June 2001.

Marney, J. P., Miller, D., Fyfe, C. & Tarbert, H. (2000). Technical Analysis versus Market
Efficiency: A Genetic Programming Approach, Computing in Economics and Finance,
Society for Computational Economics, Barcelona, Spain, July 2000 (paper #169).

Marney, J. P., Tarbert, H. & Fyfe, C. (2005). Risk Adjusted Returns from Technical Trad-
ing: A Genetic Programming Approach, Applied Financial Economics, 15: 1073-1077.

D. McAllester, B. Selman, and H. Kautz (1997). Evidence for invariants in local search. In
Proceedings of the 14th National Conference on Artificial Intelligence, pages 321–326.
AAAI Press / The MIT Press, Menlo Park, CA.

P. McMinn (2004) Search-based software test data generation: a survey, Software Testing,
Verification and Reliability 14 (2) (2004) 105–156.

P. McMinn, M. Holcombe (2003) The state problem for evolutionary testing, in: Genetic
and Evolutionary Computation Conference (GECCO), 2003, pp. 2488–2500.

P. McMinn,M. Holcombe (2004) Hybridizing evolutionary testing with the chaining ap-
proach, in: Genetic and Evolutionary Computation Conference (GECCO), pp. 1363–
1374.

P. McMinn, M. Holcombe (2005), Evolutionary testing of state-based programs, in: Ge-
netic and Evolutionary Computation Conference (GECCO), 2005, pp. 1013–1020.

A. Messac and C. A. Mattson (2004). Normal constraint method with guarantee of even
representation of complete pareto frontier. AIAA Journal, 42(10):2101—2111.

Murphy, J. J. (1999). Technical Analysis of the Financial Markets, New York: New York
Institute of Finance.

K. Miettinen (1999), Nonlinear Multiobjective Optimization. New York: Springer.
S.Minton. (1988) Learning Search Control Knowledge: An Explanation-based Approach.

Kluwer.
G. Myers (1979) The Art of Software Testing, Wiley, New York.
R. Myers and D. Montgomery (1995) Response Surface Methodology: Process and Product

Optimization Using Designed Experiments. New York: Wiley.
Y. Nagata and S. Kobayashi (1997), “Edge assembly crossover: A high-power genetic algo-

rithm for the traveling salesman problem,” Proceedings of the 7th International Confer-
ence on Genetic Algorithms, pp. 450–457.

78

Neely, C. (2001). Risk-adjusted, ex ante, optimal technical trading rules in equity markets,
Working Papers 99-015D, Revised August 2001, Federal Reserve Bank of St. Louis.

S. Nolfi and D. Floreano (2004), Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. Bradford Book, 2004.

S. O’Hagan, W. B. Dunn, M. Brown, J. D. Knowles, and D. B. Kell, (2005) “Closed-loop,
multiobjective optimization of analytical instrumentation: Gas chromatography/time-off
light mass spectrometry of the metabolomes of human serum and of yeast fermenta-
tions,” Anal. Chem., vol. 77, no. 1, pp. 290–303, 2005.

S. O’Hagan, W. Dunn, J. Knowles, D. Broadhurst, R. Williams, J. Ashworth, M. Cameron,
and D. Kell, (2007) “Closed-loop, multiobjective optimization of two-dimensional gas
chromatography/mass spectrometry for serum metabolomics,” Anal. Chem., vol. 79, no.
2, pp. 464–476, 2007.

Ender Özcan1, Burak Bilgin1, Emin Erkan Korkmaz (2008), A comprehensive analysis of
hyper-heuristics, Intelligent Data Analysis, 12(1):3—23.

Potvin, J. Y., Soriano, P. & Vallée, M. (2004) Generating Trading Rules on the Stock Mar-
kets with Genetic Programming, Computers and Operations Research, Vol. 31, Issue 7
(June 2004): 1033 - 1047

Pring, M. J. (1980). Technical Analysis Explained, New York: McGraw-Hill.
I. Rechenberg (1964), “Cybernetic solution path of an experimental problem,” Library

Transl., vol. 1122, 1964.
I. Rechenberg, (2000) “Case studies in evolutionary experimentation and computation,”

Comput. Meth. Appl. Mech. Eng., vol. 186, no. 2-4, pp. 125–140, 2000.
G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell (1983). Engineering Optimization

Methods and Applications. New York : Wiley.
Romero, J., Machado, P. (2008) The Art of Artificial Evolution: A Handbook of Evolu-

tionary Art and Music. Springer Neitherlands.
P. Ross, E.Hart and D.Corne (1997). Some Observations about GA-based Exam Time-

tabling. In LNCS 1408, Practice and Theory of Automated Timetabling II : Second In-
ternational Conference, PATAT 1997, Toronto, Canada, August 1997, selected papers
(eds Burke E.K. and Carter M), Springer-Verlag, pp 115-129.

Ross, P. Javier G. Marín-Blázquez, Sonia Schulenburg, Emma Hart. (2003) Learning a
Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to
Hyper-heuristics, Proceeedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2003), Springer Lecture Notes in Computer Science vol 2724, pp 1295-
1306.

P.Ross, S.Schulenburg, J.G.Marín-Blázquez and E.Hart. (2002) Hyper-heuristics: learning
to combine simple heuristics in bin-packing problems. In Genetic and Evolutionary
Computation Conference (GECCO 2002).

P.Ross, S.Schulenburg, J.G.Marín-Blázquez and E.Hart. (2002) Learning a Procedure That
Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-
heuristics, in GECCO 2003, Springer LNCS, pp.

Ruggiero, M. A. (1997). Cybernetic Trading Strategies, NY: Wiley.
Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd

ed.), Upper Saddle River, NJ: Prentice Hall, pp. 163-171
R. Sagarna, A. Arcuri, X. Yao (2007) Estimation of distribution algorithms for testing ob-

ject oriented software, in: IEEE Congress on Evolutionary Computation (CEC), 2007,
pp. 438–444.

A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res.
Develop., vol. 3, pp. 210–219, 1959.

J. Schaeffer, R. Lake, P. Lu, and M. Bryant, “Chinook: The world man-machine checkers
champion,” AI Magazine., vol. 17, pp. 21–29, 1996

79

J. Schaeffer (1996) One Jump Ahead: Challenging Human Supremacy in Checkers. New
York: Springer-Verlag, 1996, p. 97, 447.

A. Seesing (2006) Evotest: test case generation using genetic programming and software
analysis. Master’s thesis, Delft University of Technology.

B. Selman, H. J. Levesque, and D. G. Mitchell (1992). A new method for solving hard sat-
isfiability problems. In 10th AAAI, pages 440—446, San Jose, CA.

B. Selman, H.A. Kautz, and B. Cohen. (1994) Noise strategies for improving local search.
In Proceedings of the 12th National Conference on Artificial Intelligence, pages 337–
343. AAAI Press / The MIT Press, Menlo Park, CA.

Sharpe, W. F. (1966). "Mutual Fund Performance". Journal of Business 39 (S1): 119–138.
doi:10.1086/294846.

Shaw, R. L. (1998) Fighter Combat : Tactics and Maneuvering. United States Naval Insti-
tute Press.

Sims K. (1991) Artificial evolution for computer graphics. In Proc. the 18th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH 1991), New
York: ACM Press, 1991, pp.319–328.

Smith , R. E., Dike, B. A., Mehra, R. K., Ravichandran , B. and El-Fallah, A. (2000). Clas-
sifier Systems in Combat: Two-Sided Learning of Maneuvers For Advanced Fighter
Aircraft. Computer Methods in Applied Mechanics and Engineering, 186: 431—437.

R.E. Smith, B.A. Dike, B. Ravichandran, A. El-Fallah, R.K. Mehra (2002) Discoveing
novel fighter combat maneuvers: simulating test pilot creativity, in P. Bentley & D.
Corne (eds.) Creative Evolutionary Systems, Morgan Kuafmann, pp. 467—486.

Smith, R. E. and Dike B. A. (1995) Learning novel fighter combat maneuver rules via ge-
netic algorithms. International Journal of Expert Systems, 8(3) (1995) 247-276.

G. Tassey (2002) The economic impacts of inadequate infrastructure for software testing,
final report, National Institute of Standards and Technology.

H. Terashima-Marín, P.M.Ross, and M.Valenzuela-Rendón (1999). Evolution of constraint
satisfaction strategies in examination timetabling. In W. Banzhaf et al., editor, Proceed-
ings of the GECCO-99 Genetic and Evolutionary Computation Conference,pp 635-642.
Morgan Kaufmann.

Thompson, A. and P. Layzell (1999), “Analysis of unconventional evolved electronics,”
Commun. ACM, vol. 42, no. 4, pp. 71–79, 1999.

P. Tonella (2004) Evolutionary testing of classes, in: Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA), 2004, pp. 119–
128

V. Trianni, S. Nolfi, and M. Dorigo (2006), “Cooperative hole avoidance in a swarm-bot,”
Robot. Autonom. Syst., vol. 54, no. 2, pp. 97–103, 2006.

C. Tuerk and L. Gold (1990), “Systematic evolution of ligands by exponential enrichment:
RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, p.
505.

W. Visser, C.S. Pasareanu, S. Khurshid (2004) Test input generation with java pathfinder,
in: Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA).

W. Visser, C.S. Pasareanu, R. Pela`nek (2006) Test input generation for java containers us-
ing state matching, in: Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA), 2006, pp. 37–48.

Wang, Y., Tan, T., Zhu, Y. (2000) Face verification based on singular value decomposi-
tion and radial basis function neural network, In Proc 4th Asian Conf. on Computer Vi-
sion, pp. 432—436.

80

Wang, S.F., Wang, S., Takagi, H. (2006) User fatigue reduction by an absolute rating data-
trained predictor in IEC, Proc. 2006 Congress on Evolutionary Computation, pp.
2195—2200.

S. Wappler, J. Wegener (2006) Evolutionary unit testing of object-oriented software using
strongly-typed genetic programming, in: Genetic and Evolutionary Computation Con-
ference (GECCO), 2006, pp. 1925–1932.

D. Wedge, W. Rowe, D. Kell, and J. Knowles (2009), “In silico modelling of directed evo-
lution: Implications for experimental design and stepwise evolution,” J. Theor. Biol.,
vol. 257, pp. 131–141.

S. Wilson (1998) Generalisation in the XCS classifier system. In proceedings of the Third
Genetic Programming Conference (J.Koza ed.), pp 665-674, Morgan Kaufmann.

T. Xie, D. Marinov, D. Notkin, (2004) Rostra: a framework for detecting redundant object-
oriented unit tests, in: IEEE International Conference on Automated Software Engineer-
ing (ASE), pp. 196—205.

T. Xie, D. Marinov,W. Schulte,D. Notkin (2005) Symstra:a framework for generating ob-
ject-oriented unit tests using symbolic execution, in: Proceedings of the 11th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 365–381.

